Bayesian Nonparametric Learning

Jaesik Choi

Statistical Artificial Intelligence Laboratory (SAIL)*

UNIST

*http://sail.unist.ac.kr

1Slides are courtesy to [Zubin, UAI 2005], [Miller, 2009], and [Orbanz, NIPS 2012]
Overview

1. Introduction - Terminology
2. Nonparametric Clustering
3. Latent Feature Models
4. Nonparametric Regression
5. Nonparametric Hierarchical Models
6. Case Study: Recent Advances in Nonparametric Regression
7. Appendix
 - Conjugate Prior
 - Dirichlet Process
 - Chinese Restaurant Process
 - Beta Process
Terminology

- **Parameteric model**
 - Number of parameters fixed (or constantly bounded) w.r.t. sample size

- **Nonparametric model**
 - Number of parameters grows with sample size
 - ∞-dimensional parameter space

- **Example:** Density estimation
Nonparametric Bayesian Model

- Definition A nonparametric Bayesian model is a Bayesian model on an ∞-dimensional parameter space.
- Interpretation Parameter space $\mathcal{T} = \text{set of possible model parameters (or pattern)},$ for example:

<table>
<thead>
<tr>
<th>Problem</th>
<th>\mathcal{T}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density estimation</td>
<td>Probabilistic distributions</td>
</tr>
<tr>
<td>Regression</td>
<td>Smooth functions</td>
</tr>
<tr>
<td>Clustering</td>
<td>Partitions</td>
</tr>
</tbody>
</table>

Solution to Bayesian problem = posterior distribution on model parameters.
Exchangeability

- Can we justify our assumptions?
 Assumption: data = model + noise
 In Bayes’ theorem

 \[p(model|data) = \frac{p(data|model)}{p(data)} p(model) \]

- Definition \(X_1, \ldots, X_n \) are exchangeable if \(P(X_1, \ldots, X_n) \) is invariant under any permutation \(\pi \):

 \[p(X_1 = x_1, \ldots, X_n = x_n) = p(X_1 = x_{\pi(1)}, \ldots, X_n = x_{\pi(n)}) \]

 e.g.

 \[p(1, 1, 0, 0, 0, 1, 1, 0) = p(1, 0, 1, 0, 1, 0, 0, 1) \]

 Order of observations does not matter.
De Finetti’s Theorem (binary cases)

Binary sequence case: all exchangeable binary sequences are mixtures of Bernoulli sequences [de Finetti, 1931]

\[p(x_1, \cdots, x_n) = \int_0^1 \theta^{t_n}(1 - \theta)^{n-t_n} dF(\theta), \]

where \(p(x_1, \cdots, x_n) = p(X_1 = x_1, \cdots, X_n = x_n) \) and \(t_n = \sum_{i=1}^n x_i \).

Implications

- Exchangeable data decomposes into mixtures of models with i.i.d. sequences
- Caution: \(\theta \) is in general an \(\infty \)-dimensional quantity
Clustering

- Observations X_1, X_2, \cdots
- Each observation belongs to exactly one cluster
- Unknown pattern $= \text{partition of } \{1, \cdots, n\}$
Mixture Models

- Mixture models

\[p(\text{data}|\text{model}) = \int_{\Omega_\theta} p(\text{data}|\theta) m(d\theta) \]

\(m \) is called the mixing measure

- Two-stage sampling
 Sample data \(X \sim p(\cdot|m) \) as:
 1. \(\Theta \sim m \)
 2. \(X \sim p(\cdot|\theta) \)

- Finite mixture model

\[m(\cdot) = \sum_{k=1}^{K} c_k \delta_{\theta_k}(\cdot) \]
Bayesian Mixture Models (BMMs)

- Random mixing measure
 \[m(\cdot) = \sum_{k=1}^{K} c_k \delta_{\theta_k}(\cdot) \]

- Conjugate priors
 A Bayesian model is conjugate if the posterior is an element of the same class of distribution as the prior (‘closure under sampling’).

| \(p(data|model) \), likelihood | \(p(model) \) conjugate prior |
|---------------------------------|-----------------------------|
| Multinomial | Dirichlet |
| Gaussian | Smooth functions |
| Clustering | Partitions |

- Choice of priors in BMM
 - Choose conjugate prior for each parameter
 - E.g.: Dirichlet prior
Dirichlet Process Mixtures

- Dirichlet process (DP) [Ferguson, 73] [Sethuraman, 94]
 A DP is a distribution on random probability measures of the form
 \[m(\cdot) = \sum_{k=1}^{\infty} c_k \delta_{\theta_k}(\cdot) \text{ where } \sum_{k=1}^{\infty} c_k = 1 \]

- Constructive definition of DP(\(\alpha, G_0\))
 \[\theta_k \sim_{iid} G_0 \]
 \[V_k \sim_{iid} \text{Beta}(1, \alpha) \]
 Compute \(c_k\) as
 \[c_k = V_k \prod_{i=1}^{k-1} (1 - V_i) \]
 This procedure is called ‘Stick-breaking construction’
Posterior Distribution

- DP Posterior

\[\theta_{n+1} | \theta_1, \cdots, \theta_n \sim \frac{1}{n + \alpha} \sum_{j=1}^{n} \delta_{\theta_j} (\theta_{n+1}) + \frac{\alpha}{n + \alpha} G_0 (\theta_{n+1}) \]

- Mixture Posterior

\[p(x_{n+1} | x_1, \cdots, x_n) = \sum_{k=1}^{K_n} \frac{n_k}{n + \alpha} p(x_{n+1} | \theta_k^*) + \frac{\alpha}{n + \alpha} \int p(x_{n+1} | \theta) G_0 (\theta) d\theta \]

- Conjugacy

- The posterior of DP(\(\alpha, G_0\)) is DP(\(\alpha + n, \frac{1}{n + \alpha} (\sum_k n_k \delta_{\theta_k^*} + \alpha G_0)\))
- The Dirichlet process is conjugate.
Inference

- Latent variables

\[p(x_{n+1}|x_1, \cdots, x_n) = \sum_{k=1}^{K_n} \frac{n_k}{n+\alpha} p(x_{n+1}|\theta_k^*) + \frac{\alpha}{n+\alpha} \int p(x_{n+1}|\theta) G_0(\theta) d\theta \]

We observe \(x_i \) and do not actually observe \(\theta_k \) (latent).

- Assignment probabilities
 - \(q_{jk} \propto n_k p(x_j|\theta_k^*) \)
 - \(q_{j0} \propto \alpha \int p(x_j|\theta) G_0(\theta) d\theta \)

- Gibbs Sampling
 Uses an assignment variable \(\phi_j \) for each observation \(x_j \).
 - Assignment step: Sampling \(\phi_j \sim Multinomial(q_{j0}, \cdots, q_{jK_n}) \)
 - Parameter sampling:
 \[
 \theta_k^* \sim G_0(\theta_k^*) \prod_{x_j \in \text{Cluster}_k} p(x_j|\theta_k^*)
 \]
Number of Clusters

- Dirichlet process

\[K_n = \# \text{ of clusters in sample of size } n \]

\[\mathbb{E}[K_n] = O(\log(n)) \]

- Modeling assumption
 - Parametric clustering: \(K_\infty \) is finite (possibly unknown, but fixed).
 - Nonparametric clustering: \(K_\infty \) is infinite.

- Rephrasing the question
 - Estimate of \(K_n \) is controlled by distribution of the cluster sizes \(c_k \) in
 \[\sum_k c_k \delta_{\theta_k} \]
 - What should we assume about the distribution of \(c_k \)
Generalizing the DP

- Pitman-Yor process

\[p(x_{n+1}|x_1, \cdots, x_n) = \sum_{k=1}^{K_n} \frac{n_k - d}{n + \alpha} p(x_{n+1}|\theta^*_k) + \frac{\alpha + K_n \cdot d}{n + \alpha} \int p(x_{n+1}|\theta) G_0(\theta) d\theta \]

Discount parameter \(d \in [0, 1] \).

- Cluster sizes
The distribution of cluster sizes is called a power law if

\[c_j \sim \gamma(\beta) \cdot j^{-\beta} \]

for some \(\beta \in [0, 1] \).

- Examples of power laws
 - Word frequencies
 - Popularity (\# of friends) in social networks
- Pitman-Yor language model
Random Partitions

- **Discrete measures and partitions**
 Sampling from a discrete measure determines a partition of \(\mathbb{N} \) into blocks \(b_k \):
 \[
 \theta_n \sim \text{iid} \sum_{k=1}^{\infty} c_k \delta_{\theta^*_k} \quad \text{and set} \quad n \in b_k \iff \theta_n = \theta^*_k
 \]
 As \(n \to \infty \), the block proportions converge: \(\frac{|b_k|}{n} \to c_k \)

- **Induced random partition**
 The distribution of a random discrete measure \(m = \sum_{k=1}^{\infty} c_k \delta_{\theta_k} \) induces the distribution of a random partition \(\prod = (B_1, B_2, \cdots) \).

- **Exchangeable random partitions**
 - \(\prod \) is called exchangeable if its distribution depends only on the sizes of its blocks.
 - All exchangeable random partitions, and only those, can be represented by a random discrete distribution (Kingman’s theorem).
Chinese Restaurant Process (CRP)

- Chinese Restaurant Process
 The distribution of the random partition induced by the Dirichlet process.

- ‘Customers and tables’ analogy

- Historical remark
 - Originally introduced by Dubins & Pitman as a distribution on infinite permutations
 - A permutation of n items defines a partition of $\{1, \cdots, n\}$ (regard cycles of permutation as blocks of partition)
 - The induced distribution on partitions is the CRP we use in clustering

Customers = observations (indices in \mathbb{N})
Tables = clusters (blocks)
Nonparametric Bayesian clustering
- Infinite # of clusters, $K_n \leq n$ of which are observed.
- If partition exchangeable, it can be represented by a random discrete distribution.

Inference Latent variable algorithms, since assignments (i.e., partition) not observed.
- Gibbs sampling
- Variational algorithms

Prior assumption
- Distribution of cluster sizes
- Implies prior assumption on # K_n of clusters.
Contents

1. Introduction - Terminology
2. Nonparametric Clustering
3. Latent Feature Models
4. Nonparametric Regression
5. Nonparametric Hierarchical Models
6. Case Study: Recent Advances in Nonparametric Regression
7. Appendix
 - Conjugate Prior
 - Dirichlet Process
 - Chinese Restaurant Process
 - Beta Process
Latent feature models
- Clustering is not enough for mixed memberships
- Grouping problem with overlapping clusters
- Encode as binary matrix: Observation n in cluster $k \iff x_{nk} = 1$
- Alternatively: Item n possesses feature $k \iff x_{nk} = 1$

Indian buffet process (IBP)
1. Customer 1 tries Poisson(α) dishes.
2. Subsequent customer $n + 1$:
 - tries a previously tried dish k with probability $\frac{n_k}{n+1}$
 - tries Poisson($\frac{\alpha}{n+1}$) new dishes.

Properties
- An exchangeable distribution over finite sets (of dishes).
- Observation (=customer) n in cluster (=dish) k if customer ‘tries dish k’
Indian Buffet Process

- Alternative description

1. Sample \(w_1, \ldots, w_K \sim \text{iid Beta}(1, \alpha/K) \)
2. Sample \(X_{1k}, \ldots, X_{nk} \sim \text{iid Bernoulli}(w_k) \)

- Beta Process (BP)

Distribution on objects of the form
\[
\theta = \sum_{k=1}^{\infty} w_k \delta_{\phi_k} \text{ with } w_k \in [0, 1].
\]

- IBP matrix entries are sampled as \(x_{nk} \sim \text{iid Bernoulli}(w_k) \).
- Beta process is the de Finetti measure of the IBP.
- \(\theta \) is a random measure
Binary matrices in left-order form
Gaussian Distributions

- **Gaussian**

 \[p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(x-\mu)^2}{2\sigma^2} \right) \]

- **Multivariate Gaussian**

 \[p(x) = \frac{1}{\sqrt{(2\pi)^n|\Sigma|}} \exp \left(-\frac{1}{2}(x - \mu)^T\Sigma^{-1}(x - \mu) \right) \]
Gaussian Processes: Definition

- GPs are distributions over functions such that any finite set of function evaluations $[f(x_1), \cdots, f(x_n)]$ have a jointly Gaussian distribution.

- A GP is completely specified by its mean function $\mu(x) = \mathbf{E}(f(x))$ and covariance kernel function $k(x, x') = \text{Cov}(f(x), f(x'))$.

- Given data $x = [x_1, \cdots, x_n]$ and $y = [f(x_1), \cdots, f(x_n)]$, GP model specified by $\mu(x)$ and $k(x, x')$.

- Notation for ‘f follows the GP’ is:

$$f \sim \text{GP}(\mu(x), k(x, x'))$$

- Likelihood is:

$$p(y|X) = \frac{1}{\sqrt{(2\pi)^n|\Sigma|}} \exp \left(-\frac{1}{2} (y - \mu)^T \Sigma^{-1} (y - \mu) \right)$$

where $\mu = [\mu(x_1), \cdots, \mu(x_n)]$ and $\Sigma_{ij} = k(x_i, x_j)$.
Gaussian Processes: Samples with different kernels

![Image of Gaussian Processes samples with different kernels](image-url)
Gaussian Processes: Predictions with different kernels

A sample from the prior for each covariance function

Corresponding predictions, mean with two standard deviations:
Gaussian Processes: Recap

- Nonparametric regression
 parameter spaces = continuous functions, say on \([a, b]\):

 \[f : [a, b] \rightarrow \mathbb{R} \quad \mathcal{T} = c[a, b] \]

- Gaussian Process

 \[f \sim GP \leftrightarrow (f(x_1), \ldots, f(x_d)) \text{ is } d\text{-dimensional Gaussian} \]

 for any finite set \(X \subset [a, b] \).

- Construction: Intuition
 - The marginal of the GP for any finite \(X \subset [a, b] \) is a Gaussian.
 - All these Gaussians are marginals of each other.
Contents

1 Introduction - Terminology
2 Nonparametric Clustering
3 Latent Feature Models
4 Nonparametric Regression
5 Nonparametric Hierarchical Models
6 Case Study: Recent Advances in Nonparametric Regression
7 Appendix
 • Conjugate Prior
 • Dirichlet Process
 • Chinese Restaurant Process
 • Beta Process
Hierarchical Gaussian Processes

- Apply Bayesian representation recursively. Split parameter Θ:

$$\Theta \rightarrow \Psi \text{ and } \Theta|\Psi$$

- $p(data) = p(data|\Theta)p(\Theta)$
- $= p(data|\Theta)p(\Theta|\Psi)p(\Psi)$

- Example: Hierarchical Gaussian process

- Sample $\Psi \sim p(\Psi)$
 (e.g., large length-scale, mean 0)

- Sample $\Theta|\Psi \sim p(\cdot|\Psi)$
 (e.g., smaller length scale, mean Ψ)

Decompose underlying pattern:

- Low-frequency component Ψ
- High-frequency component Θ
Hierarchical Dirichlet Processes

- Sampling scheme
 - Sample $G_0 \sim DP(\gamma, H)$
 - Sample $G_1, G_2, \cdots \sim DP(\alpha, G_0)$
 - Sample $x_{ij} \sim G_j$ G_1, G_2, \cdots have common ‘vocabulary’ of atoms.

- Nonparametric Latent Dirichlet Allocation (LDA)

 $$G_0 = \sum_{k=1}^{\infty} c_k \delta_{\theta_k^*} \quad G_j = \sum_{l=1}^{\infty} D_i^j \delta_{\phi_l^j}$$

 - $\theta_k = \text{finite probability (‘topic’)}$
 - $c_k = \text{occurrence probability of topic } k$
 - Document j drawn from weighted combination of topics, with proportions D_i^j (‘admixture model’)
<table>
<thead>
<tr>
<th>Applications</th>
<th>Parameter space</th>
<th>Bayesian Nonparametric model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>Function</td>
<td>Gaussian process</td>
</tr>
<tr>
<td>Clustering</td>
<td>Partition</td>
<td>Chinese restaurant process</td>
</tr>
<tr>
<td>Density estimation</td>
<td>Density</td>
<td>Dirichlet process mixture</td>
</tr>
<tr>
<td>Hierarchical clustering</td>
<td>Hierarchical partition</td>
<td>Dirichlet/Pitmann-or diffusion tree, Nested CRP</td>
</tr>
<tr>
<td>Latent variable modeling</td>
<td>Features</td>
<td>Beta process/Indian buffet process</td>
</tr>
<tr>
<td>Dictionary learning</td>
<td>Dictionary</td>
<td>Beta process/Indian buffet process</td>
</tr>
<tr>
<td>Survival analysis</td>
<td>Hazard</td>
<td>Beta process, Neural-to-the-right process</td>
</tr>
<tr>
<td>Power-law behaviour</td>
<td></td>
<td>Pitman-Yor process, Stable-beta process</td>
</tr>
<tr>
<td>Deep learning</td>
<td>Features</td>
<td>Cascading/nested Indian buffet process</td>
</tr>
<tr>
<td>Dimensionality reduction</td>
<td>Manifold</td>
<td>Gaussian process latent variable model</td>
</tr>
<tr>
<td>Topic models</td>
<td>Atomic distribution</td>
<td>Hierarchical Dirichlet process</td>
</tr>
<tr>
<td>Relational modeling</td>
<td>Relations</td>
<td>Infinite relational model, Mondrian process</td>
</tr>
</tbody>
</table>
Introduction - Terminology
Nonparametric Clustering
Latent Feature Models
Nonparametric Regression
Nonparametric Hierarchical Models
Case Study: Recent Advances in Nonparametric Regression
Appendix
 - Conjugate Prior
 - Dirichlet Process
 - Chinese Restaurant Process
 - Beta Process
Recent advances in Nonparametric Regression
Problem

Descriptive prediction of multiple time series
Problem

Descriptive prediction of multiple time series
Problem

Descriptive prediction of multiple time series
Problem (this paper)

Descriptive prediction of multiple time series

Constant function

Sudden drop btw 9/12/01 ~ 9/15/01

Smooth function
Length scale: y weeks

Rapidly varying smooth function
Length scale: z hours

Constant function
Sudden drop btw 9/12/01 ~ 9/15/01
Automatic Bayesian Covariance Discovery*
[Lloyd et. al. 2014] [Ghahramani. 2015]

* http://www.automaticstatistician.com/
Gaussian Processes

\[f(x) \sim \mathcal{GP}(\mu(x), k(x, x')) \]

Mean function

\[\mu(x) = \mathbb{E}(f(x)) \]

Covariance kernel function

\[k(x, x') = \text{Cov}(f(x), f(x')) \]
Gaussian Processes

\[
f(x) \sim \mathcal{GP}(\mu(x), k(x, x'))
\]

Mean function
\[
\mu(x) = \mathbb{E}(f(x))
\]

Covariance kernel function
\[
k(x, x') = \text{Cov}(f(x), f(x'))
\]

\[
\begin{align*}
[f(x_1), \ldots, f(x_N)] & \sim \mathcal{N}(\mu, \Sigma) \\
\mu & = [\mu(x_1), \ldots, \mu(x_N)] \\
\Sigma_{ij} & = k(x_i, x_j)
\end{align*}
\]
The Automatic Statistician*

(1) Encode characteristic

\[f(x) \sim \mathcal{GP}(\mu(x), k(x, x')) \]

Find appropriate kernel
The Automatic Statistician*

(1) Encode characteristic

Find appropriate kernel

\[f(x) \sim \mathcal{GP}(\mu(x), k(x, x')) \]

(2) Compose new kernel

If \(g(x) \sim \mathcal{GP}(0, k_g) \), \(h(x) \sim \mathcal{GP}(0, k_h) \) and \(g(x) \perp h(x) \), then

\[g(x) + h(x) \sim \mathcal{GP}(0, k_g + k_h) \]

\[g(x) \times h(x) \sim \mathcal{GP}(0, k_g \times k_h) \]

*Automatic Bayesian Covariance Discovery (http://www.automaticstatistician.com/)
[Lloyd; Duvenaud; Grosse; Tenenbaum; Ghahramani. 2014.] [Ghahramani. Nature. 2015.]
The Automatic Statistician: Base kernels

<table>
<thead>
<tr>
<th>Base kernel</th>
<th>Encoding function</th>
<th>Kernel function</th>
<th>Parameters</th>
<th>Example kernel function shape</th>
<th>Example encoded functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIN(x, x')</td>
<td>Linear function</td>
<td>$\sigma^2 (x - \ell)(x' - \ell)$</td>
<td>σ, ℓ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE(x, x')</td>
<td>Smooth function</td>
<td>$\sigma^2 \exp \left(-\frac{(x - x')^2}{2\ell^2} \right)$</td>
<td>σ, ℓ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PER(x, x')</td>
<td>Periodic function</td>
<td>In appendix</td>
<td>σ, ℓ, p</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Automatic Statistician: Operators

<table>
<thead>
<tr>
<th>Op.</th>
<th>Concept</th>
<th>Params</th>
<th>Example</th>
<th>Example kernel function shape</th>
<th>Example encoded functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Addition Superposition OR operator</td>
<td>N/A</td>
<td>SE + PER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>×</td>
<td>Multiplication AND operator</td>
<td>N/A</td>
<td>SE × PER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Automatic Statistician: Operators

<table>
<thead>
<tr>
<th>Op.</th>
<th>Concept</th>
<th>Params</th>
<th>Example</th>
<th>Example encoded functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>Divide left vs right</td>
<td>ℓ, s</td>
<td>CP(LIN, LIN)</td>
<td>\times + \times =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>Divide in vs out</td>
<td>ℓ, s, w</td>
<td>CW(LIN, C)</td>
<td>\times + \times =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(1) Optimization criterion: Bayesian Information Criterion (BIC)

\[
\text{BIC}(\mathcal{M}) = -2 \log P(D|\mathcal{M}) + |\mathcal{M}| \log |D|
\]
The Automatic statistician: Learning

(1) Optimization criteria: Bayesian Information Criterion (BIC)

\[
\text{BIC}(\mathcal{M}) = -2 \log P(D|\mathcal{M}) + |\mathcal{M}| \log |D|
\]

(2) Learning algorithm (Composite Kernel Learning)

- Iteratively select best model \((\text{structure } k, \text{parameter } \theta)\)
- (1) \textbf{Expand}: the current kernel
- (2) \textbf{Optimize}: conjugate gradient descent
- (3) \textbf{Select}: the best kernel in the level (greedy)
- (4) \textbf{Iterate}: get back to (1) for the next level
Example Result

The Automatic Statistician*

* Automatic Bayesian Covariance Discovery (http://www.automaticstatistician.com/)
[Lloyd; Duvenaud; Grosse; Tenenbaum; Ghahramani. 2014.] [Ghahramani. Nature. 2015.]
Prediction Performance (Extrapolation)

13 famous regression datasets
The Relational Automatic Statistician

[Hwang, Tong and Choi, 2016]
Motivation

The Automatic Statistician

Adjusted Close of General Electronics

9/11, 2001
Motivation

Adjusted Close of General Electronics, Microsoft, ExxonMobil

- Exploit multiple time series
- Find global descriptions
- Hope better predictive performance

9/11, 2001
Model: Gaussian Process

\[P(D|M) = P(D | GP(0, k(x, x' \theta))) \]

Gaussian Processes → CKL → RKL → SRKL
Model: Composite Kernel Learning (CKL)

$P(D|\mathcal{M}) = P(D | \mathcal{GP}(0, k(x, x'; \theta)))$

GPs \rightarrow Composite Kernel Learning \rightarrow RKL \rightarrow SRKL

Generalized Multi Kernel Learning
Model: Relational Kernel Learning (RKL)

\[P(D | \mathcal{M}) = \prod_{j=1}^{M} P(d_j | \mathcal{GP}(0, \sigma_j \times k(x, x'; \theta) + c_j)) \]

GPs → CKL → Relational Kernel Learning → SRKL
Model: Semi-Relational Kernel Learning (SRKL)

GPs \rightarrow CKL \rightarrow RKL \rightarrow Semi-Relational Kernel Learning

\[
P(D|\mathcal{M}) = \prod_{j=1}^{M} P(d_j|\mathcal{GP}(0, \sigma_j \times k(x, x'; \theta) + k_j(x, x'; \theta_j)))
\]
Semi-Relational Kernel Learning (SRKL)

Input: M time series

Output: A shared kernel \(k \), M spectral mixture (SM) kernels

1. **Expand**: the current shared kernel for all time series
2. **Optimize**: expanded kernels for all M time series (conjugate gradient descent)
 - For each series, individual distinction is handled by the SM kernel.
3. **Select**: the best shared kernel for all time series (greedy)
 - A shared kernel \((k) \) and M SM kernels \((k_j) \)
4. **Iterative**: get back to (1) when level \(s \) is not reached

Find the best shared and distinctive kernels iteratively!
Experimental Results

Three real-world data sets:
- US top 9 stocks in year 2001
- US top 6 housing markets from 2003 to 2013
- Currency exchange of 4 emerging market
Data sets

<table>
<thead>
<tr>
<th>Descriptions</th>
<th>Graphs (normalized)</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 adjusted close of stock figures</td>
<td></td>
<td>GE, MSFT, XOM, PFE, C, WMT, INTC, BP, AIG</td>
</tr>
<tr>
<td>6 US housing price indices</td>
<td></td>
<td>New York, Los Angeles, Chicago, Phoenix, San Diego, San Francisco</td>
</tr>
<tr>
<td>4 emerging market currency exchanges</td>
<td></td>
<td>Indonesian - IDR, Malaysian - MYR, South African - ZAR, Russian - RUB</td>
</tr>
</tbody>
</table>
Qualitative Results

US stock market values suddenly drop after US 9/11 attacks.

Currency exchange is affected by FED’s policy change in interest rates around middle Sep 2015.

4 currency exchange rates

Learned component

Currency exchange is affected by FED’s policy change in interest rates around middle Sep 2015.
An automatic report for the dataset: GE
Relational version

2.6 Component 6: A constant. This function applies from 12 Sep 2001 until 15 Sep 2001.

This component is constant. This component applies from 12 Sep 2001 until 15 Sep 2001.

This component explains 100.0% of the residual variance; this increases the total variance explained from 95.2% to 100.0%. The addition of this component increases the cross validated MAE by 0.67% from 0.87 to 0.87. This component explains residual variance but does not improve MAE which suggests that this component describes very short term patterns, uncorrelated noise or is an artefact of the model or search procedure.

Figure 1: Raw data (left) and model posterior with extrapolation (right)
Quantitative Results

<table>
<thead>
<tr>
<th>Data set</th>
<th>Negative log likelihood</th>
<th>Bayesian Information Criteria</th>
<th>Root mean square error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CKL</td>
<td>RKL</td>
<td>SRKL</td>
</tr>
<tr>
<td>STOCK3</td>
<td>332.75</td>
<td>311.84</td>
<td>304.05</td>
</tr>
<tr>
<td>STOCK6</td>
<td>972.00</td>
<td>1007.09</td>
<td>988.14</td>
</tr>
<tr>
<td>STOCK9</td>
<td>1776.31</td>
<td>1763.96</td>
<td>1757.11</td>
</tr>
<tr>
<td>HOUSE2</td>
<td>264.69</td>
<td>304.29</td>
<td>310.38</td>
</tr>
<tr>
<td>HOUSE4</td>
<td>594.79</td>
<td>586.81</td>
<td>1249.82</td>
</tr>
<tr>
<td>HOUSE6</td>
<td>849.64</td>
<td>891.09</td>
<td>1495.40</td>
</tr>
<tr>
<td>CURRENCY4</td>
<td>578.35</td>
<td>617.77</td>
<td>693.76</td>
</tr>
</tbody>
</table>

STOCK3 = \{GE, MSFT, XOM\}
STOCK6 = STOCK3 + \{PFE, C, WMT\}
STOCK9 = STOCK6 + \{INTC, BP, AIG\}
HOUSE2 = \{NY, LA\}
HOUSE4 = HOUSE2 + \{Chicago, Phoenix\}
HOUSE6 = HOUSE4 + \{San Diego, San Francisco\}
CURRENCY4 = \{IDR, MYR, ZAR, RUB\}
Quantitative Results (box plots)

9 stocks 6 house price indices 4 currency exchanges
Conclusion

• Our research topic is about
 “Solving descriptive prediction problem of multiple time series”

• We proposed models that can
 “Exploit both common and distinct changes”

• We found that our models
 “Show the better qualitative and quantitative performance compared to the state-of-the-art GP regression method”
THANK YOU

jaesik@unist.ac.kr
Research in Dynamical Relational Models

Relational Kalman Filter [DR]
IJCAI’11

Variational Inference with Relational Hybrid Models [R]
UAI’12

Inference with Higher Order Models [R]
IJCAI’15

Aggregating Relational Discrete Models [R]
AAAI’11

Relational Continuous Models [R]
UAI’10

Learning Relational Kalman Filter [DR]
AAAI’15

Dynamical Compressive Sensing [D]
UAI’16

Change Point Detection By Reading Texts [D]
EMNLP’15

Relational Automatic Statistician [DR]
ICML’16

Locally Exchange Measures [R]
SSDBM’16

Gaussian process
From text to regression
lossy compression
exponential random graph models
latent models
learning
beyond Gaussian
dynamic
discrete
Ongoing Research – Semantic Segmentation
Problem 1: Pixel-wise Semantic Segmentation

Input: a set of images
Output: per-pixel semantic labels

E.g., Fully Convolutional Network (Berkeley)
Global Deconvolutional Network*

Currently, pixel-wise prediction accuracy is 74.0% on PASCAL VOC 2012 data. Ranked top 10 in terms of unique research teams/ top 4 without using external data set. (May 2016)

Currently, pixel-wise prediction accuracy is 74.0% on PASCAL VOC 2012 data. Ranked top 10 in terms of unique research teams/ top 4 without using external data set. (May 2016)
Application to Image-based Melanoma Detection

Joint work with Haebeom Lee, Janghoon Ju, Thanh Nguyen, Vladimir Nekrasov, and Prof. Seyoung Chun.
Ongoing Research – Plant Diagnosis
Problem 11: Component Diagnosis in Complex Systems

Input: a set of sensor signals, plant information (schematic diagram and (physical) balance equation)
Output: identify the root cause (component) of the fault
Problem II: Component Diagnosis in Complex Systems

This task becomes very important after Fukushima disaster.
Problem II: Component Diagnosis in Complex Systems

Plant System (Sensor values)

Balance Equation: Thermo-Hydraulic Equations

\[Q_{\text{mass}} = W_{\text{out}} - W_{\text{in}} \]

Residual = \(\Delta \) sensors

Diagnosis Diagram

Bilding in a probabilistic programming framework
Problem II: Component Diagnosis in Complex Systems

Plant System (Sensor values)

Balance Equation: Thermo-Hydraulic Equations

\[Q_{\text{mass}} = W_{\text{out}} - W_{\text{in}} \]

Residual = \Delta \text{ sensors}

with Deep Learning Features (Autoencoder + Recurrent Convolutional Layers)

Diagnosis Diagram
Simple Example

Task: Toss a (potentially biased) coin N times. Compute θ, the probability of heads.

Suppose we observe: \{T, H, H, T\}. What do we think θ is? The maximum likelihood estimate is $\theta = 1/2$. Seems reasonable.

Now suppose we observe: \{H, H, H, H\}. What do we think θ is? The maximum likelihood estimate is $\theta = 1$. Seem reasonable?
Simple Example

Task: Toss a (potentially biased) coin N times. Compute θ, the probability of heads.

Suppose we observe: \{T, H, H, T\}. What do we think θ is? The maximum likelihood estimate is $\theta = 1/2$. Seems reasonable.

Now suppose we observe: \{H, H, H, H\}. What do we think θ is? The maximum likelihood estimate is $\theta = 1$. Seem reasonable?

Not really. Why?
When we observe \{H, H, H, H\}, why does $\theta = 1$ seem unreasonable?

Prior knowledge! We believe coins generally have $\theta \approx 1/2$. How to encode this? By using a Beta prior on θ.

Kurt T. Miller Dr. Nonparametric Bayes 10
When we observe \{H, H, H, H\}, why does $\theta = 1$ seem unreasonable?

Prior knowledge! We believe coins generally have $\theta \approx 1/2$. How to encode this? By using a Beta prior on θ.
Bayesian Approach to Estimating θ

Place a Beta(a, b) prior on θ. This prior has the form

$$p(\theta) \propto \theta^{a-1}(1 - \theta)^{b-1}.$$

What does this distribution look like?
Bayesian Approach to Estimating θ

Place a Beta(a, b) prior on θ. This prior has the form

$$p(\theta) \propto \theta^{a-1}(1 - \theta)^{b-1}.$$

What does this distribution look like?
Bayesian Approach to Estimating θ

After observing X, a sequence with n heads and m tails, the posterior on θ is:

$$p(\theta|X) \propto p(X|\theta)p(\theta)$$

$$\propto \theta^{a+n-1}(1-\theta)^{b+m-1}$$

$$\sim \text{Beta}(a+n, b+m).$$
Bayesian Approach to Estimating θ

After observing X, a sequence with n heads and m tails, the posterior on θ is:

$$p(\theta|X) \propto p(X|\theta)p(\theta)$$
$$\propto \theta^{a+n-1}(1-\theta)^{b+m-1}$$
$$\sim \text{Beta}(a+n, b+m).$$

If $a = b = 1$ and we observe 5 heads and 2 tails, Beta(6, 3) looks like
The Dirichlet Distribution

We had

\[\pi \sim \text{Dirichlet}(\alpha_1, \ldots, \alpha_K) \]

The Dirichlet density is defined as

\[
p(\pi | \alpha) = \frac{\Gamma \left(\sum_{k=1}^{K} \alpha_k \right)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \pi_1^{\alpha_1 - 1} \pi_2^{\alpha_2 - 1} \cdots \pi_K^{\alpha_K - 1}
\]

where \(\pi_K = 1 - \sum_{k=1}^{K-1} \pi_k \).

The expectations of \(\pi \) are

\[
E(\pi_i) = \frac{\alpha_i}{\sum_{i=1}^{K} \alpha_i}
\]
The Beta Distribution

A special case of the Dirichlet distribution is the Beta distribution for when $K = 2$.

$$p(\pi | \alpha_1, \alpha_2) = \frac{\Gamma (\alpha_1 + \alpha_2)}{\Gamma (\alpha_1) \Gamma (\alpha_2)} \pi^{\alpha_1-1} (1 - \pi)^{\alpha_2-1}$$
The Dirichlet Distribution

In three dimensions:

\[
p(\pi|\alpha_1, \alpha_2, \alpha_3) = \frac{\Gamma(\alpha_1 + \alpha_2 + \alpha_3) \pi_1^{\alpha_1-1} \pi_2^{\alpha_2-1}(1 - \pi_1 - \pi_2)^{\alpha_3-1}}{\Gamma(\alpha_1)\Gamma(\alpha_2)\Gamma(\alpha_3)}
\]

\(\alpha = (2, 2, 2)\)

\(\alpha = (5, 5, 5)\)

\(\alpha = (2, 2, 5)\)
Parametric Bayesian Clustering

Draws from the Dirichlet Distribution

\[\alpha = (2, 2, 2) \]

\[\alpha = (5, 5, 5) \]

\[\alpha = (2, 2, 5) \]
Key Property of the Dirichlet Distribution

The Aggregation Property: If

\[(\pi_1, \ldots, \pi_i, \pi_{i+1}, \ldots, \pi_K) \sim \text{Dir}(\alpha_1, \ldots, \alpha_i, \alpha_{i+1}, \ldots, \alpha_K)\]

then

\[(\pi_1, \ldots, \pi_i + \pi_{i+1}, \ldots, \pi_K) \sim \text{Dir}(\alpha_1, \ldots, \alpha_i + \alpha_{i+1}, \ldots, \alpha_K)\]

This is also valid for any aggregation:

\[\left(\pi_1 + \pi_2, \sum_{k=3}^K \pi_k\right) \sim \text{Beta}\left(\alpha_1 + \alpha_2, \sum_{k=3}^K \alpha_k\right)\]
Let \(Z \sim \text{Multinomial}(\pi) \) and \(\pi \sim \text{Dir}(\alpha) \).

Posterior:

\[
p(\pi|z) \propto p(z|\pi)p(\pi)
\]
\[
= \left(\pi_1^{z_1} \cdots \pi_K^{z_K} \right) \left(\pi_1^{\alpha_1 - 1} \cdots \pi_K^{\alpha_K - 1} \right)
\]
\[
= \left(\pi_1^{z_1+\alpha_1 - 1} \cdots \pi_K^{z_K+\alpha_K - 1} \right)
\]

which is \(\text{Dir}(\alpha + z) \).
Contents

1. Introduction - Terminology
2. Nonparametric Clustering
3. Latent Feature Models
4. Nonparametric Regression
5. Nonparametric Hierarchical Models
6. Case Study: Recent Advances in Nonparametric Regression

7. Appendix
 - Conjugate Prior
 - Dirichlet Process
 - Chinese Restaurant Process
 - Beta Process
Parameters for the Dirichlet Process

- α - The concentration parameter.

- G_0 - The base measure. A prior distribution for the cluster specific parameters.

The Dirichlet Process (DP) is a \textit{distribution over distributions}. We write

$$G \sim \text{DP}(\alpha, G_0)$$

to indicate G is a distribution drawn from the DP.

It will become clearer in a bit what α and G_0 are.
The Dirichlet Process Model

The Dirichlet Process

Definition: Let G_0 be a probability measure on the measurable space (Ω, B) and $\alpha \in \mathbb{R}^+$. The Dirichlet Process $DP(\alpha, G_0)$ is the distribution on probability measures G such that for any finite partition (A_1, \ldots, A_m) of Ω,

$$(G(A_1), \ldots, G(A_m)) \sim \text{Dir}(\alpha G_0(A_1), \ldots, \alpha G_0(A_m)).$$

(Ferguson, '73)
Mathematical Properties of the Dirichlet Process

Suppose we sample

• $G \sim DP(\alpha, \mathcal{G}_0)$
• $\theta_1 \sim \mathcal{G}$

What is the posterior distribution of \mathcal{G} given θ_1?
Mathematical Properties of the Dirichlet Process

Suppose we sample

- \(G \sim DP(\alpha, G_0) \)
- \(\theta_1 \sim G \)

What is the posterior distribution of \(G \) given \(\theta_1 \)?

\[
G|\theta_1 \sim DP \left(\alpha + 1, \frac{\alpha}{\alpha + 1} G_0 + \frac{1}{\alpha + 1} \delta_{\theta_1} \right)
\]

More generally

\[
G|\theta_1, \ldots, \theta_n \sim DP \left(\alpha + n, \frac{\alpha}{\alpha + n} G_0 + \frac{1}{\alpha + n} \sum_{i=1}^{n} \delta_{\theta_i} \right)
\]
Mathematical Properties of the Dirichlet Process

With probability 1, a sample $G \sim DP(\alpha, G_0)$ is of the form

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$$

(Sethuraman, '94)
The Stick-Breaking Process

• Define an infinite sequence of Beta random variables:

\[\beta_k \sim \text{Beta}(1, \alpha) \quad k = 1, 2, \ldots \]

• And then define an infinite sequence of mixing proportions as:

\[\pi_1 = \beta_1 \]

\[\pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_l) \quad k = 2, 3, \ldots \]

• This can be viewed as breaking off portions of a stick:

\[\beta_1 \quad \beta_2 (1-\beta_1) \quad \ldots \]

• When \(\pi \) are drawn this way, we can write \(\pi \sim \text{GEM}(\alpha) \).
The Stick-Breaking Process

- We now have an explicit formula for each π_k:
 $$\pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_l)$$

- We can also easily see that $\sum_{k=1}^{\infty} \pi_k = 1$ (wp1):
 $$1 - \sum_{k=1}^{K} \pi_k = 1 - \beta_1 - \beta_2 (1 - \beta_1) - \beta_3 (1 - \beta_1)(1 - \beta_2) - \cdots$$
 $$= (1 - \beta_1)(1 - \beta_2 - \beta_3 (1 - \beta_2) - \cdots)$$
 $$= \prod_{k=1}^{K} (1 - \beta_k)$$
 $$\rightarrow 0 \quad (\text{wp1 as } K \rightarrow \infty)$$

- So now $G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$ has a clean definition as a random measure
Contents

1. Introduction - Terminology
2. Nonparametric Clustering
3. Latent Feature Models
4. Nonparametric Regression
5. Nonparametric Hierarchical Models
6. Case Study: Recent Advances in Nonparametric Regression
7. Appendix
 - Conjugate Prior
 - Dirichlet Process
 - Chinese Restaurant Process
 - Beta Process
The Chinese Restaurant Process (CRP)

- A random process in which n customers sit down in a Chinese restaurant with an infinite number of tables
 - first customer sits at the first table
 - mth subsequent customer sits at a table drawn from the following distribution:

$$
P(\text{previously occupied table } i | F_{m-1}) \propto n_i
$$
$$
P(\text{the next unoccupied table} | F_{m-1}) \propto \alpha
$$

where n_i is the number of customers currently at table i and where F_{m-1} denotes the state of the restaurant after $m - 1$ customers have been seated
The CRP and Clustering

- Data points are customers; tables are clusters
 - the CRP defines a prior distribution on the partitioning of the data and on the number of tables
- This prior can be completed with:
 - a likelihood—e.g., associate a parameterized probability distribution with each table
 - a prior for the parameters—the first customer to sit at table k chooses the parameter vector for that table (ϕ_k) from the prior

- So we now have a distribution—or can obtain one—for any quantity that we might care about in the clustering setting
The Dirichlet Process Model

The CRP Prior, Gaussian Likelihood, Conjugate Prior
The CRP and the DP

OK, so we’ve seen how the CRP relates to clustering. How does it relate to the DP?

Important fact: The CRP is exchangeable. Remember De Finetti’s Theorem: If \((x_1, x_2, \ldots, x_n)\) are infinitely exchangeable, then

\[
\forall n \ p(x_1, \ldots, x_n) = \int \left(\prod_{i=1}^{n} p(x_i|G) \right) dP(G)
\]

for some random variable \(G\).
The CRP and the DP

OK, so we've seen how the CRP relates to clustering. How does it relate to the DP?

Important fact: The CRP is *exchangeable*.

Remember De Finetti's Theorem: If \((x_1, x_2, \ldots)\) are *infinitely exchangeable*, then \(\forall n\)

\[
p(x_1, \ldots, x_n) = \int \left(\prod_{i=1}^{n} p(x_i|G) \right) dP(G)
\]

for some random variable \(G\).
The Dirichlet Process Model

The CRP and the DP

The *Dirichlet Process* is the *De Finetti mixing distribution* for the CRP.
The Dirichlet Process is the De Finetti mixing distribution for the CRP.

That means, when we integrate out G, we get the CRP.

$$p(\theta_1, \ldots, \theta_n) = \int \prod_{i=1}^{n} p(\theta_i|G) dP(G)$$
The Dirichlet Process Model

The CRP and the DP

The *Dirichlet Process* is the *De Finetti mixing distribution* for the *CRP.*

In English, this means that if the DP is the prior on G, then the CRP defines how points are assigned to clusters when we integrate out G.
The DP, CRP, and Stick-Breaking Process Summary

The CRP describes the partitions of θ when G is marginalized out.

$G \sim \text{DP}(\alpha, G_0)$

G

α

G_0

Ω

Stick-Breaking Process
(just the weights)

The CRP describes the partitions of θ when G is marginalized out.
Definition [Hjort, 90]: Let H_0 be a continuous probability measure (Ω, \mathcal{B}) and $\alpha \in \mathbb{R}^+$. Then, Beta Process $BP(\alpha, H_0)$ is the distribution on probability measures H such that for any (disjoint) finite partition (A_1, \cdots, A_k) of Ω satisfies

$$H(A_i) \sim \text{Beta}(\alpha H_0(A_i), \alpha(1 - H_0(A_i)))$$

with $K \to \infty$ and $H_0(A_i) \to 0$ for $i = 1, \cdots, K$.

The beta process can be written in set function form,

$$H(w) = \sum_{k=1}^{\infty} \pi_k \delta_{w_k}(w)$$