
Lifted Inference for Relational Continuous Models

Jaesik Choi and Eyal Amir
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, IL 61801

{jaesik,eyal}@illinois.edu

David J. Hill
Department of Civil and Environmental Engineering

Rutgers, The State University of New Jersey
Piscataway, NJ 08854

ecodavid@rci.rutgers.edu

Abstract

Relational Continuous Models (RCMs) represent joint prob-
ability densities over attributes of objects, when the attributes
have continuous domains. With relational representation,
they can model joint probability distributions over large num-
bers of variables compactly in a natural way. This paper
presents the first exact inference algorithm for RCMs at a
lifted level, thus it scales up to large models of real world ap-
plications. The algorithm applies to relational pairwise mod-
els which are (relational) products of potentials of arity 2. Our
algorithm is unique in two ways. First, it is an efficient lifted
inference algorithm. When Gaussian potentials are used, it
takes only linear time while existing methods take cubic time.
Second, it is the first exact inference algorithm which handles
RCMs in a lifted way. The algorithm is illustrated over an ex-
ample from Econometrics. Experimental results show that
our algorithm outperforms both a ground-level inference al-
gorithm and an algorithm built with previously-known lifted
methods.

1 Introduction
Many real world systems are described by continuous vari-
ables and relations among them. Such systems include mea-
surements in environmental-sensors networks, localizations
in robotics, and economic forecasting in finance. Once a
relational model among variables is given, inference algo-
rithms can solve the problems of value prediction and clas-
sification.

At a ground level, inference with a large number of con-
tinuous variables is nontrivial. Typically, inference is the
task of calculating a marginal over variables of interest. Sup-
pose that a market index has a relationship with revenues of
n banks. When marginalizing the market index out, the re-
sult is a function of n variables (revenues of banks), thus
following marginalizations become harder. When n grows,
the computation becomes expensive. When relations among
variables follow Gaussian distributions, the computational
complexity of the inference problem is cubic to the number
of ground variables. Thus, computation with such models is
limited to moderate-size models, preventing usage of such
models for large, real-world applications.
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To address these issues, Relational Probabilistic Lan-
guages (RPLs) (Ng and Subrahmanian 1992; Koller and
Pfeffer 1997; Pfeffer et al. 1999; Friedman et al. 1999;
Poole 2003; de Salvo Braz, Amir, and Roth 2005; Richard-
son and Domingos 2006; Milch and Russell 2006; Getoor
and Taskar 2007) describe probability distributions at a re-
lational level with the purpose of capturing larger mod-
els. RPLs combine probability theory for handling un-
certainty and relational models for representing system
structures. Thus, they facilitate construction and learning
of probabilistic models for large systems. (Poole 2003;
de Salvo Braz, Amir, and Roth 2005; Milch et al. 2008;
Singla and Domingos 2008) showed that such models en-
able more efficient inference than possible with proposi-
tional graphical models, when inference occurs directly at
a relational level.

Present exact lifted inference algorithms (Poole 2003;
de Salvo Braz, Amir, and Roth 2006; Milch et al. 2008)
and those developed in the efforts above are suitable for dis-
crete domains, thus can in theory be applied to continuous
domains through discretization. However, the precision of
discretizations deteriorates exponentially with the number of
dimensions in the model, and the number of dimensions in
relational models is the number of ground random variables.
Thus, discretization and usage of discrete lifted inference al-
gorithms is highly imprecise.

Here, we propose the first exact lifted inference algorithm
for Relational Continuous Models (RCMs), a new relational
probabilistic language for continuous domains. Our main
insight is that, for some classes of potential functions (or
potentials), marginalizing out a ground random variable in
a RCM can yield a RCM representation that does not force
other random variables to become propositional. Further,
relational pairwise models, i.e. products of relational poten-
tials of arity 2, remain relational pairwise models after elim-
ination of ground random variables in those models. Thus, it
leads to the compact representation and the efficient compu-
tation. We provide conditions for relational pairwise mod-
els, and report a Gaussian potential.

Given a RCM, our algorithm marginalizes continuous
variables by analytically integrating random variables ex-
cept query variables. It does so by finding potentials and
variables, eliminating them by Inversion Elimination. If
such elimination is not possible, it eliminates each pairwise



Loss(s,b): Loss of a bank(b) in a market(s) (e.g. $-0.2B)
Market(s): Market index of a sector(s) (e.g.-5.3%)
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Market[S] = {Market(auto), Market(house), …,  Market(stock)}

Figure 1: This figure shows a model over banks and market
indices. Recession, Market[S], Loss[S,B] and Revenue[B]
are continuous variables whose range are [−∞,∞]. For
example, Market(stock) is −5.3%, and Loss(stock,Bm) is
−$0.2B.

form in a linear time. If the marginal is not in pairwise form,
it converts the marginal into a pairwise form.

This paper is organized as follows. Section 2 provides
the formal definition of RCMs. Section 3 overviews our in-
ference algorithms. Section 4 presents main intuitions and
results in Gaussian potentials. Section 5 provides the gener-
alized algorithm for arbitrary potentials. Section 6 provides
experimental results followed by related works in Section 7.
We conclude in Section 8.

2 Relational Continuous Models
We present a new relational model for continuous variables,
Relational Continuous Models (RCMs). Relations among
attributes of objects are represented by Parfactor models.1
Each parfactor (L,C,A, φ) is composed of a set of objects
(L), constraints on L (C), a list attributes of objects (A), and a
potential on A (φ). Here, each attribute is a random variable
with a continuous domain.

We define a Relational Atom to refer the set of ground
attributes compactly. For example, Revenue[B] is a rela-
tional atom which refers to revenues of banks (e.g. B =
{‘Pacific Bank′, ‘Central Bank′, · · · }). To make the parfac-
tor compact, a list of relational atoms is used for A. To refer
to an individual random variable, substitutions are used. For
example, if a substitution (B = ‘Pacific Bank′) is applied to
a relational atom, then the relational atom Revenue[B] be-
comes a ground variable Revenue(‘Pacific Bank′). Formally,
applying a substitution θ to a parfactor g = (L,C,A, φ)
yields a new parfactor gθ = (L′,Cθ,Aθ, φ), where L′ is ob-
tained by renaming the variables in L according to θ. If θ is a

1Part of its representation and terms are based on the previous
(Poole 2003; Pfeffer et al. 1999; Milch and Russell 2006) However,
our representation allows continuous random variables.

ground substitution, gθ is a factor. The set of groundings of
a parfactor g is represented as gr(g) = {gθ : θ ∈ gr(L : C)}.
We use RV(X) to enumerate the random variables in the re-
lational atom X. Formally, RV(α) = {α[θ] : θ ∈ gr(L)}.
LV(g) refers the set of objects (L) in g.

The joint probability density over random variables is de-
fined with factors in a parfactor model. A factor f is com-
posed of Ag and φ. Ag is a list of ground random variables
(i.e. (X1(θ), · · · ,XN(θ))). φ is a potential on Ag: a function
from range(Ag) = {range(X1(θ)) × · · · × range(XN(θ))} to
non-negative real numbers. The factor f defines a weight-
ing function on a valuation (v = (v1, · · · , vm)): w f (v) =
φ(v1, · · · , vm)). The weighting function for a parfactor F
is the product of weighting function of all factors, wF(v) =∏

f∈F w f (v). When G is a set of parfactors, the density is
the product of all factors in G:

wG(v) =
∏
g∈G

∏
f∈gr(g)

w f (v). (1)

For example consider the model in Figure 1. S and B in L are
two objects which represent markets and banks respectively.
S can be substituted by a specific market sector (e.g. S =
‘stock′). A parfactor f1 = ({Market[S],Loss[S,B]}, φ1) is
defined over two relational atoms, Market[S] and Loss[S,B].
Market(auto) represents the quarterly market change (e.g.
Market(auto)=−3.1%). Loss(auto,Pacific Bank) represents
the loss of the bank in the auto market. Given two values,
a potential φ1(Market(auto),Loss(auto,Pacific Bank)) pro-
vides the probability density.

3 Algorithm Overview for RCMs
One inference task with such models is to find the condi-
tional density of query variables given observations of some
variables in the model. Our inference algorithm, First-Order
Variable Elimination(FOVE)-Continuous, recursively elim-
inates relational atoms as described in Figure 2.

First, it splits (terminology of (Poole 2003); shattering
in (de Salvo Braz, Amir, and Roth 2005)) relational atoms
such that groundings, RV(X) RV(Y), of every pair of re-
lational atoms, X Y, are disjoint. It introduces observa-
tions of groundings as separate relational variables. For ex-
ample, observing Market(auto) = 30% creates two sepa-
rate relational atoms: Market(auto), Market(M)M,auto. The
‘M , auto’ then appears in parfactors relating to the latter
relational atom. After split, FIND-ELIMINABLE finds a re-
lational atom which satisfies conditions for one of the elimi-
nation algorithms: Inversion-Elimination (Sections 5.1) and
Relational-Atom-Elimination (Section 5.2). The found atom
is eliminated by our ELIMINATE-CONTINUOUS algorithm
explained in Sections 4 and 5. It iterates the elimination until
only query variables are remained.

Our main contributions are the algorithm ELIMINATE-
CONTINUOUS, a lifted variable eliminations for continu-
ous variables. We describe it in detail in Section 4 and 5.

4 Inference with Gaussian Potentials
This section presents our first main technical contribution,
efficient variable elimination algorithms for relational Gaus-



PROCEDURE FOVE-Continuous(G,Q)
G a set of parfactors, Q a set of random variables(the query).
1. If RV(G) = Q return G
2. G← SPLIT(G,Q)
3. E← FIND-ELIMINABLE(G,Q)
4. GE ← {g ∈ G : RV(g) and RV(E) intersect }
5. GE ← G \ GE
6. g′ ← ELIMINATE-CONTINUOUS(GE,E) (Section 4 & 5)
7. G′ ← {g′}

⋃
GE

8. return FOVE-Continuous(G′,Q)

PROCEDURE ELIMINATE-CONTINUOUS(G,E)
G a set of parfactors, E a set of random variables to be eliminated
1. A′ ← AG \ E

2. g← (LV(A′),CG,A′,
∏

g∈G Φ

|ΘG |
|Θg |
g )

3. If (LV(E)=LV(g)) (E is inversion-eliminable)
return Inversion-Elimination(g,E)

4. Else return Relational-Atom-Elimination(g,E)

PROCEDURE FIND-ELIMINABLE(G,Q)
G: parfactors, Q: ⊂ RV(G) (G is split against Q)
1. For e from AG \Q

Ge ← {g ∈ G : RV(g) and RV(e) intersect }
If LV(e) = LV(Ge) return e (for Inversion-Eliminable)

2. Choose e from AG \Q
3. return e (for Relational-Atom-Elimination)

Figure 2: FOVE Continuous (First-Order Variable Elimina-
tion with continuous variables) algorithm.

sian models. We focus on the inference problem of comput-
ing the posterior of query variables given observations for
some random variables. Efficiently marginalizing out rela-
tional atoms is important for solving this inference problem.

4.1 Relational Pairwise Potentials
This section focuses on the product of potentials which we
call Relational Normals (RNs). An RN is the following
function with arity 2 (Section 5 provides a generalization
for arbitrary potentials.):

φRN(X,Y) =
∏

x∈X,y∈Y

φRN(x, y) =
∏

x∈X,y∈Y

1

σ
√
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)
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Figure 3: This figure shows a challenging problem in a RCM
when eliminating a set of variables (Revenue[B]). Eliminat-
ing Revenue[B] in φ4 generates an integral φ5 that makes all
variables in Market[S] ground. Thus, the elimination makes
the RCM into a ground network.

4φ : Market[S], Revenue[B] 5φ′: Market(si),Market(sj) (si,sj∈S)
Pair-wise Form (Eliminate Revenue[B])
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Figure 4: This figure shows our method for the problem
shown in Figure 3. When eliminating Revenue[B], we do
not generate a ground network. Instead, we directly gener-
ate the pairwise form which allows the inference at the lifted
level.

This potential indicates that the difference between two ran-
dom variables follows a Gaussian distribution.

Consider the models shown in Figure 3 and 4. These
random variables model the relationship between each mar-
ket change and the revenue of each bank. To simplify no-
tations, we respectively shorten Market(s), Loss(s, b) and
Revenue(b) to M(s), G(s, b) and R(b) in equations. The po-
tential φ4 in these figures is φRN(M(s),R(b)), and the com-
plete model is

∏
s∈S,b∈B φRN(M(s),R(b))

Figure 4 shows that marginalizing out a random variable
R(bi) from the joint density results in the product RNs again
(c and c’ are constants).2 Formally,∫

R(bi )

∏
s∈S

φ4(M(s),R(bi)) = c · exp
(

(
∑

s∈S M(s))2

2σ2 · |S|
−

∑
s∈S M(s)2

2σ2

)

= c ·
∏

1≤i< j≤|S|

exp
(
−

(M(si) −M(s j))2

2σ2 · |S|

)
= c′ ·

∏
1≤i< j≤|S|

φ′5(M(si),M(s j))

Definition 1 (Connected Relational Normal) The product
of RNs is connected, when the connectivity graph of RNs
is a connected component. Each vertex of the connectivity
graph is a random variable or a constant in RNs, and each
edge is a potential (RN). �

Lemma 1 The product of RNs is a probability density func-
tion when it is connected, and at least a RN includes a con-
stant argument.

Lemma 1 can be proved by that the product of connected
RNs integrates to a constant given a constant argument.
However, we omit the proof for lack of space.

4.2 Constant Time Relational Atom Eliminations
We provide two constant time elimination algorithms for
RNs involving a single relational potential (i.e. the product
of RNs over different instances of relational atoms). The al-
gorithms eliminate variables, while maintaining the product
of RNs.

Elimination of a relational atom X from φRN(X,Y) The
first problem is to marginalize a relational atom (X) in
the product of RNs with two relational atoms (X, Y):

2Note,
∫

R(bi)
exp

(
−aR(bi)

2 + 2bR(bi) − c
)

=
√
π
a exp

(
b2

a − c
)
.



φRN(X,Y). The potential is the product of |X| · |Y| RNs.
Note that each random variable in X has a relation with each
variable in Y.

Algorithm ‘Pairwise Constant1’ It marginalizes xi in X,
and converts the potential into a pairwise form.∫

xi

∏
y∈Y

exp
(
−

(xi − y)2

2σ2

)
=

∏
yi ,yj∈Y,i< j≤|Y|

exp
(
−

(yi − y j)2

2σ2 · |Y|

)
(2)

Note that the marginal over xi ∈ X and the marginal over
x j ∈ X (i , j) are same. Thus, the following result is derived
when it marginalizes all variables in X.∫

x1

· · ·

∫
x
|X|

∏
xi∈X

∏
y∈Y

exp
(
−

(xi − y)2

2σ2

)
=

∏
xi∈X


∫

xi

∏
y∈Y

exp
(
−

(xi − y)2

2σ2

)
=

 ∏
yi ,yj∈Y,i< j≤|Y|

exp
(
−

(yi − y j)2

2σ2 · |Y|

)
|X|

=
∏

yi ,yj∈Y,i< j≤|Y|

exp
(
−
|X|(yi − y j)2

2σ2 |Y|

)
(3)

The result of integration is the product of pairwise RNs
(φRN(Y,Y)) with the parameter |X|

2σ2·|Y| .

Theorem 2 For the product of RNs between two relational
atoms, ‘Pairwise Constant1’ eliminates all variables in a re-
lational atom at a constant time.

Proof Eliminating a variables xi in X takes a constant time
as Equation 2. Eliminating other variables in X can be done
without iterations as shown in Equation 3. Thus, the com-
putation takes only a constant time. �

Elimination of n random variables from φRN(X,X) The
second problem is to marginalize some (n) variables in a re-
lational atom (X) in the product of RNs within the relational
atom: φRN(X,X). The potential is the product of |X|·(|X|−1)

2
pairwise RNs between two variables in X.

Algorithm ‘Pairwise Constant2’ It updates the marginal
after eliminating a random variable without iterations. When
it eliminate xm, it calculates the parameters of φ′′RN given
φRN as the following equation.∫

xm

∏
1≤i< j≤m

φRN(xi, x j) =
∏

1≤i< j≤m−1

φRN(xi, x j) ·
∫

xm

∏
1≤i≤m−1

exp
(
−

(xi − xm)2

2σ2

)

=
∏

1≤i< j≤m−1

φRN(xi, x j) ·
∏

1≤i< j≤m−1

exp
(
−
·(xi − x j)2

2σ2 · (m − 1)

)
=

∏
1≤i< j≤m−1

φRN(xi, x j) ·
∏

1≤i< j≤m−1

φ′RN(xi, x j) =
∏

1≤i< j≤m−1

φ′′RN(xi, x j)

The coefficient of φ′′RN is the sum of coefficient of φRN, σ2,
and the coefficient of φ′RN, σ2(m − 1). The sum of two co-
efficients results in σ2

·
m−1

m . Similarly, eliminating the next
random variable αm−1 results in σ2 m−2

m (=σ2 m−1
m

m−2
m−1 ). Thus,

eliminating n random variables results in σ2 m−n
m without it-

erations.

Theorem 3 For the product of RNs within a relational atom,
‘Pairwise Constant2’ eliminates n variables in the relational
atom at a constant time.

Proof Updating the parameter of φRN(X,X) from σ2 to
σ2 m−n

m takes only a constant time. �

4.3 A Linear Time Relational Atom Elimination
This section provides a linear time variable elimination al-
gorithm O(|U|) which can be applied to any product of RNs
when the constant time algorithms of the previous sections
are not applicable.

Elimination of relational atoms from
∏
φRN(Xi,X j)

This problem is to marginalize some variables in U, (U =
{X1,X2, · · · ,X|N|}) in the product of RNs between two re-
lational atoms:

∏
φRN(Xi,X j). If all relational atoms are

related each other, there are |N|·|N−1|
2 pairwise RNs.

Lemma 4 For |U| variables in |N| relational atoms (U =
{X1,X2, · · · ,X|N|}) and RN potentials, marginalizing n vari-
ables in a ground model takes O(n · |U|2).

Proof Suppose we eliminate a variable x ∈ U. Eliminating
a variable x in RN needs updates coefficients of terms (xix j)
where xi and x j have relations with the variable x. When
x has relations with all other variables in U, the number of
terms is bounded by O(|U|2). Thus, eliminating n variables
takes O(n · |U|2) because it needs n iterations. �

Thus, any inference algorithm in a ground model has the
order of O(|U|3) time complexity, when it eliminates all
ground variables except a few query variables.

Algorithm ‘Pairwise Linear’ To reduce the time com-
plexity, our lifted algorithm uses following notations which
refer multiple variables in an atom X: X[m] =

∑
1≤i≤m xi;

X[m]2 =
∑

1≤i≤m x2
i ; X[m][m] =

∑
1≤i< j≤m xi · x j; and

(
X[m]

)2 =
X[m]2 +2X[m][m]. The notations give the following properties:

exp
(
2X[m][m] − (m − 1)X[m]2

)
=

∏
1≤i< j≤m

exp
(
−(xi − x j)2

)
= φ′RN(X,X)

exp
(
2X[m]Y[n] − nX[m]2 −mY[n]2

)
=

∏
1≤i≤m,1≤k≤n

exp
(
−(xi − yk)2

)
= φ′′RN(X,Y)

For a potential over X, Y, and {x′}, it marginalizes x′:∫
x′
φRN(X, x′) · φRN(Y, x′)

=

∫
x′

exp
(
−(m + n)x′2 + 2(X[m] + Y[n])x′ − (X[m]2 + Y[n]2 )

)
= c · exp

( 2X[m][m] + 2X[m]Y[n] + 2Y[n][n] − (m + n − 1)(X[m]2 + Y[n]2 )

m + n

)
= c · φ′RN(X,X) · φ′′RN(X,Y) · φ′′′RN(Y,Y) (4)

It iterates until all n variables are eliminated.

Theorem 5 For |U| variables in |N| relational atoms (U =
{X1,X2, · · · ,X|N|}) and potentials in RN, ‘Pairwise Linear’
eliminates n variables in O(n · |N|2).

Proof WLOG, we marginalize a variable x′ ∈ X1. We make
an artificial atom Y which includes all relational atoms those
have relationships with X1. Then, {x′} is separated from
X1 (X′1 = X1 \ {x′}). When marginalizing φRN(X′1, x

′) ·
φRN(Y, x′) over x′, the marginal is also the product of RNs
as Equation 4: φ′RN(X′1,X

′

1) · φ′′RN(X′1,Y) · φ′′′RN(Y,Y).
The marginal can be represented without the artificial

atom Y. We remove Y from φ′′RN(X′,Y) and φ′′′RN(Y,Y).
φ′′RN(X′1,Y) is represented as the product of RNs between
atoms in Y and X′1:

∏
Xi∈Y φ

′′

RN(X′1,Xi). φ′′′RN(Y,Y) is also



represented as the product of RNs between atoms in B:∏
Xi,X j∈Y φ

′′

RN(Xi,X j).
For each elimination, it updates parameters of all pairs

O(|N|2) among |N| atoms. Thus, computational complexity
to eliminate n variables is the order of O(n · |N|2). �
Thus, ‘Pairwise Linear’ has the order of linear O(|U|) time
complexity with respect the number of ground variables.

5 Exact Lifted Inference with RCM
This section presents our algorithm, ELIMINATE-
CONTINUOUS, which generates a new parfactor after
eliminating a set of relational atoms given a set of par-
factors. A potential of each parfactor is the product of
Relational Pairwise Potentials (RPPs):

φRP(X,Y) =
∏

x∈X,y∈Y

φRP(x, y)

A relational pairwise model is a RCM whose potentials are
RPP. Here, RPPs are not limited to the RNs in Section 4.1.

Conditions for Exact Lifted Inference The lifted ELIM-
INATE CONTINUOUS algorithm provides the exact solu-
tion for potentials of parfactors when the potentials satisfy
three conditions: (I) analytically integrable; (II) closed un-
der product operation; and (III) represented as the product
of relational pairwise potentials after marginalizations. RNs
are examples which satisfy the conditions.

5.1 Inversion-Elimination
Inversion elimination is applicable when the set of objects in
g is same with the set of objects in e, LV(e) = LV(g). Let
θ1,...,θn be enumeration of Θg.∫

RV(e)
φ(g) =

∫
RV(e)

∏
θ∈Θg

φg(Agθ) =

∫
e[θ1]
· · ·

∫
e[θn ]

φg(Agθ1) · · ·φg(Agθn)

=
∏
θ∈Θg

∫
e[θ]

φg(Agθ)(∵ split) =
∏
θ∈Θg

∫
e[θ]

φg(Agθ)

=
∏
θ∈Θg

∫
e
φg(A′θ, e) =

∏
θ∈Θg

φ′(A′θ) = φ(g′)

Return to the financial market example, inversion elimina-
tion can eliminate G[S,B]. Before elimination, we get a par-
factor g = ({S,B},>, (M[S],G[S,B],R[B]), φ2 · φ3) which
combines the two parfactors, ({S,B},>, (M[S],G[S,B]), φ2)
and ({S,B},>, (G[S,B],R[B]), φ3). Then, the elimination
procedure is as follows.∫

RV(G)
φ(g) =

∫
RV(G)

∏
s∈S,b∈B

φg(M(s),G(s, b),R(b))

=
∏

s∈{auto,··· ,stock},b∈{b1 ,··· ,bm}

(∫
G(s,b)

φg(M(s),G(s, b),R(b))
)

=
∏

s∈{auto,··· ,stock},b∈{b1 ,··· ,bm}

φnew(M(s),R(b)) = φnew(M[S],R[b]) = φ(g′)

Note that, the number of substitutions (|Θg|) is the num-
ber of market sectors (|S|) times the number of banks
(|B|). Regardless the number of substitutions, we can ap-
ply the same integration to eliminate |Θg| number of ran-
dom variables (G(s,b)). Thus, it calculates the integral (=∫

L φg(M(s),G(s, b),R(b))) once regardless of specific s and
b. The marginal becomes the potential (φnew(M[S],R[B]))
of the output parfactor (g′).

5.2 Relational-Atom-Elimination
Relational-Atom-Elimination marginalizes atoms when
Inversion-Elimination is not applicable. It is a generalized
algorithm of those for RN shown in Section 4. It marginal-
izes each relational atom of a parfactor g according to three
cases: (1) variables in the atom e has no direct relationship
each other (i.e. ‘φ(X,Y)φ(X,Z)’); (2) variables in the atom
e has relationships only each other (i.e. ‘φ(X,X)’); and (3)
other cases (i.e. ‘

∏
φ(Xi,X j)’).

For the case (1), a generalized ‘Pairwise Constant1’ elim-
inates an atom e. In this case, marginalizing a random
variable in the atom does not affect marginalizing another
variable in the atom as shown in Section 4.2. That is,∫

RV(e)

∏
θ∈Θg

φg(.) =
∏

θe∈Θe

∫
e(θe)

∏
θ∈Θg\{e}

φg(.). Here, E

is the set of atoms in g, and E = E \ {e}.∫
RV(e)

φ(g) =

∫
RV(e)

∏
θ∈Θg

φg(Agθ) =

∫
RV(e)

∏
θe∈Θe

∏
θ∈Θg\{e}

φg(Agθe,Agθ)

=
∏
θe∈Θe

∫
e[θe ]

∏
θ∈Θg\{e}

φg(Agθe,Agθ) =
∏
θe∈Θe

φ′(RV(E))(∵ condition(I))

= φ′(RV(E))|RV(e)| = φ′′(RV(E))(∵ condition(II))

The marginal φ′′(RV(E)) is not a relational pairwise po-
tential anymore, because all random variables in E are ar-
guments of the potential. When condition (III) is satisfied,
the marginal can be converted into the product of relational
pairwise potentials: φ′′(RV(E)) =

∏
Xi,X j∈RV(E) φi, j(Xi,X j).

In the econometric example, it eliminates R[B] as follows.∫
RV(R)

φ(g′) =

∫
RV(R)

∏
s∈S,b∈B

φnew(M(s),R(b))

=
∏
b∈B

∫
R(b)

∏
s∈S

φnew(M(s),R(b)) =
∏
b∈B

φ′new(M(auto), · · · ,M(stock))

= φ′new(M(auto), · · · ,M(stock))|RV(R)| = φ′′new(M(auto), · · · ,M(stock))

Beyond Relational Gaussian defined in Section 4.1, any po-
tential function satisfying the third condition can convert the
potential φ′′new into the pairwise form

∏
φ′′′new.

φ′′new(M(auto), · · · ,M(stock)) =
∏

s1 ,s2∈S

φ′′′new(M(s1),M(s2))

For the cases (2) and (3), generalized algorithms of ‘Pair-
wise Constant2’ and ‘Pairwise Linear’ are also applied, re-
spectively.

6 Experiments
We report experiments for the recession model provided
in the paper. For experiments, we implemented three al-
gorithms: (A) inference with a grounded model; (B) in-
ference with only Inversion-Elimination; and (C) infer-
ence with both Inversion-Elimination and Relational-Atom-
Elimination. Our new algorithm (C) is significantly faster
than the grounded model (A) and Inversion-Elimination (B).
Note that Inversion-Elimination (B) is also our new algo-
rithm for continuous variables, even though comparable
elimination methods for discrete variables (de Salvo Braz,
Amir, and Roth 2005; Milch et al. 2008; Pfeffer et al. 1999)
existed prior to ours. Our experimental results are shown in
Figures 5 and 6.
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Figure 5: Inference time with different numbers of banks
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Figure 6: Inference time with different numbers of markets

In the recession model, we provided observations for one
market variable (M) and one revenue variable (R). Those
variables were split from relational atoms. Then, we cal-
culated the marginal density of the Recession variable. We
increased the number of markets and the number of banks
from 2 to 2048 exponentially. We set an hour of cut-off time.
With 512 banks, the grounded inference (A) did not com-
plete within an hour. The Inversion Elimination (B) and our
new algorithm (C) finished computations in almost a con-
stant time for 2048 banks. With 512 markets, (A) could not
finish within an hour, again. With 1024 markets, (B) did
not finish in an hour. Our new algorithm (C) finished in a
reasonable time (about 151 secs) even with 2048 markets.

7 Related Works
(Poole 2003) solves inference problems with the unification
which dynamically splits a set of ground nodes and unifies
them. With a counting formula, (de Salvo Braz, Amir, and
Roth 2005; 2006) provide tractable algorithms. (Milch et
al. 2008) devises an improved algorithm using the counting
formula to represent conditional density tables compactly.
However, such lifted inference algorithms for discrete vari-
ables are not applicable to continuous variables.

Markov Logic Network (MLNs) (Richardson and Domin-
gos 2006) use First-order logic sentences to represent re-
lationships over nodes in a graphical model. In this re-
gard, MLNs also represent graphical models at the rela-
tional level. (Singla and Domingos 2008) provides an ap-
proximated lifted inference algorithm over discrete domain.
(Domingos and Singla 2007) makes an analysis for infinitely
many discrete variables. However, these achievements are
not for continuous domains, too. Thus, they are comparable
to lifted inferences (de Salvo Braz, Amir, and Roth 2005;

Milch et al. 2008; Pfeffer et al. 1999) over discrete domains.
Inference with Gaussian distributions is a traditional prob-

lem (Roweis and Ghahramani 1999). In detail, calculat-
ing conditional densities of multivariate Gaussians requires
matrix inversions (Kotz, Balakrishnan, and Johnson 2000)
which are intractable for high dimensions. (Paskin 2003)
shows that efficient inference is possible for a linear Gaus-
sian when the treewidth of the model is small. For models
with large treewidth, however, those inference algorithms
over ground models are not applicable in practice.

8 Conclusion
In this paper, we propose a new exact lifted inference al-
gorithm for Relational Continuous Models (RCMs). This
algorithm is an advancement of exact inference in RCMs,
since all previous works are restricted to discrete domains.
Given a query and observations, our algorithm computes the
conditional density of the query efficiently.
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