
Factor-Guided Motion Planning for a Robot Arm

Jaesik Choi and Eyal Amir
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, IL 61801

{choi31,eyal}@cs.uiuc.edu

Abstract— Motion planning for robotic arms is important for
real, physical world applications. The planning for arms with
high-degree-of-freedom (DOF) is hard because its search space
is large (exponential in the number of joints), and the links
may collide with static obstacles or other joints (self-collision).
In this paper we present a motion planning algorithm that
finds plans of motion from one arm configuration to a goal
arm configuration in 2D space assuming no self-collision. Our
algorithm is unique in two ways: (a) it utilizes the topology
of the arm and obstacles to factor the search space and
reduce the complexity of the planning problem using dynamic
programming; and (b) it takes only polynomial time in the
number of joints under some conditions. We provide a sufficient
condition for polytime motion planning for 2D-space arms:
if there is a path between two homotopic configurations, an
embedded local planner finds a path within a polynomial time.
The experimental results show that the proposed algorithm
improves the performance of path planning for 2D arms. †

I. INTRODUCTION

Robotic motion planning focuses on finding paths from
one robot configuration to another. Robotic arms are par-
ticular robots that are made of connected links and joints
(their degrees of freedom (DOF)). They are used for general-
purpose manipulation of the work space, and planning with
them is hard due to the high DOF [1], [2], [3], [4].

Current research on motion planning for robotic arms
is limited in the number of joints that an arm can have
in practice, especially with complex obstacles. Common
approaches focus on mapping obstacles into the configuration
space of an arm, and result in a search space of exponential
size in the number of arm joints [8]. Recent progress
in classical AI-planning suggests a different approach that
focuses on factoring and dynamic programming [5], [6], [7].
This approach is promising because it can take advantage
of the structure of the search space, and sometimes leads to
polynomial-time planning.

In this paper we present a fast planning algorithm for
a robotic arm in 2D. We focus on a manipulator that has
revoluting joints connecting oval-like pegs, much like a
human’s shoulder, elbow, wrist, palm, and fingers. Joints of
the arm are stacked sequentially, so that there is no self-
collision. These simplifying assumptions keep the motion
planning problem exponential still in the dimensionality of

†Previous works *informally* appeared in workshops (5th International
Workshop on Cognitive Robotics and AAAI 2006 Fall Symposium on
Integrating Reasoning into Everyday Applications). However, the original
work previously appeared in no official publication.

the space (the number of joints of the arm) [8], and they
allow us to focus on the fundamentals of a factored planning
approach for it.

Our path planning algorithm can scale to robotic arms
with high DOF. It groups together configurations that share
topological shape against obstacles, i.e., if they indicate the
same end-point and smoothly deform into each other (we call
those homotopic configurations and define them formally in
Section II-D).

Our algorithm has three procedures: factoring and local
planning. The planning problem (configuration space) is fac-
tored into subdomains whose elements share the topological
shape. Then, our factoring algorithm finds a comprehensive
set of plans between neighboring subdomains in a dynamic-
programming fashion. An embedded planner (grid-based A*
or sampling-based roadmap) finds local paths within each
subdomain. We call the combined algorithm Factor-Guided
Motion Planning.

In factoring, a dynamic program finds reachable locations
from a subdomain. Each reachable location has an action
which leads to the location with a specified reachable pivot
point (acting joints) given a direction of movement (eg.
left or right). The reachable configurations are found in
order from the inner-most joint to the outer-most one. All
the reachable configurations are found in polynomial time
with dynamic programming, encoding homotopic one using
a representative configuration (thus, we sidestep the possibly
large (exponential) number of configurations).

In the second part of the algorithm, an embedded local
planner is called a linear number of time to find a plan
between two homotopic configurations. This procedure is
done by any traditional motion planner (eg. grid-based A*
planner or sampling-based roadmap planner). Thus, our
local planner differs from local planners in motion planning
literature (typically, straight-line planners in the configuration
space) in that it looks for an arbitrary path between two
homotopic configurations.

In practice, the combined algorithm can provide a path
without self-collision, if we choose an appropriate local
planner. There are many motion planners which find self-
collision-free paths between two homotopic configurations.
With the local planer, the combined algorithm finds a path
with no self-collision, even though we assume self-collision
in the factoring algorithm.

The bottleneck in our overall algorithm is the embedded

Reachable locations

(R1) (R2)

(M2) An obstacle

Cannot merge

(M1)

merge

No obstacle

Joint 1 Joint 2

representative

l1

l2 l3
l4

Joint 2
Joint 1

l0
p0 p2p1

link 1

confl

confr

Fig. 1: (R1)(R2) shows the reachable locations with actions from an end-
effector location. (M1)(M2) shows the condition of merging two sets of
actions. (R1) represents a location which is reachable by a link and a joint.
The two neighboring locations are reached by moving the joint 1 toward left
or right. (R2) represents a position which is reachable by two links. Four
neighboring positions (l1, l2, l3, and l4) are respectively lead by 4 actions:
moving joint 1 toward the left (l1); moving joint 2 toward the left (l2);
moving joint 2 toward the right (l3); and moving joint 1 toward the right
(l4). (M1) shows the two set of configurations and their actions which can be
merged into a group. (M2) shows the two separated set of configurations and
their actions which cannot be merged because they have different topology
due to an obstacle.

planner which may take exponential time in the worst case.
In some cases, an embedded planner can find a path between
homotopic configurations in polynomial time (O(ch)) where
c is the discretized angles of a joint and h is a constant. In
those cases, the complexity of the algorithm is O(m · l4 ·2n +
l · ch) (m is the number of joints, n is the number of island
(floating) obstacles, and l is the length of a longer side of
workspace). Otherwise, the overall complexity still depends
on the configuration space O(m · l4 ·2n + l · cm).

Our experiments show that our method performs better
than one of the most successful grid-decomposition methods
[1]. It is also at least as good or compatible with grid-
decomposition based planners and probabilistic roadmap
based planners because we may use them as an embedded
planner.

1) Related Work: Most previous motion-planning work
is based on planning in configuration spaces (e.g., Potential
Field [9], Cell Decomposition [10], and Roadmap [8], [3]).
The configuration space of a robot arm is the set of all
the possible configurations of all joints, thus this space is
exponentially large in the number of joints of the arm. This
state-space size makes planning infeasible for moderately
complex arms (e.g., ≥ 10 joints).

Recent approaches try to overcome the state-space size
problem. [11] groups close points in configuration space
into a set of balls. The method is computed in configuration
space, resulting in large computational burden. [12] solves

goalinit

(1) (2) (3)

(5) (6)(4) goalobstacle

Fig. 2: Figures from (1) to (6) show the sequence of planning. The
figures focus only on each step of the plan, although our algorithm finds
all the possible pathes with breath-first search. (1) is the planning task
from an initial configuration to a goal one. There is no direct path for
the task because the obstacle splits two types of topologies of the arm
(left sides and right sides). In each step (2)(3)(4)(5), our algorithm provides
neighboring positions from the current position. The goal position is found
after searching the 2D workspace which limits search space.

this problem by decomposing the workspace instead of the
configuration space. They find a set of balls that can contain
the entire robot, later find homotopic paths for the mobile
robot in the workspace. Unfortunately, it is impossible to
implement this method for a robotic arm that needs to
manipulate elements in the complex environment. A grid-
based planning algorithm [1] efficiently finds a solution
for a robotic arm with a distance-based heuristic function.
However, it may not find paths even when relatively simple
ones exist.

Section 2 presents the intuition of our planning algorithm.
Section 3 describes the details of our path algorithm. Section
4 analyzes the complexity and correctness of our algorithm.
Section 5 and 6 provide experimental results and close with
conclusions.

II. AN EXAMPLE AND PROBLEM DEFINITION

This section shows an example of path planning for an
arm. Figure 1 shows the steps to find all the possible actions
for the arm given the environment. Figure 2 shows the steps
to find a path from an initial configuration to a goal one.
We also present the domain encoding used by our path
planning algorithm. The input of our algorithm is a 2D chain
of vertices (joints), edges (links), their initial positions, and
a target location of the end effector. The only actions are
rotations of joints.

A. A Motivating Example

We are interested in finding sets of plans that move the
position of end-effector (eg. an action from p0 to p1 in
Figure 1(R1)). The algorithm first finds the set of accessible
positions (eg. p0) for joint 1 and their neighboring positions
(eg. p1 and p2). For each position, it marks the possible
entrance configurations, any angle with which link 1 can
approach from joint 1 to joint 2 at that position (in this case,
the location of joint 1 is fixed in the base, so there is at most
one such angle for every position).

The algorithm proceeds in a dynamic-programming fash-
ion as follows. For each position for joint 2, we find the set
of accessible positions. Each position of joint 2 (eg. l0 in
Figure 1(R2)) has reachable positions (eg. l1, l2, l3, and l4).
Some (eg. l2 and l3) are reachable by moving the current
joint. The others (eg. l1 and l4) are found by using the plans
of the previous joint. For example, the l0 moves to l1, when

the p0 in joint 1 moves to p1. That is, a plan (from l0 to l1)
is built by the plan of the joint 1 (from p0 to p1).

Our algorithm considers the topology of the arm. In Figure
1 (M1), a position has two entrance configurations: con fl ;
and con fr. If the two configurations have the same topology,
it merges the two sets of plans and selects one representative
(eg. con fl). However, in Figure 1 (M2), it maintains the sep-
arated sets of plans, because their topologies are difference
due to an obstacle in the middle.

Finally, for each possible position of joint 2 we find the set
of accessible positions of joint 3. Every positions for joint 3
may have many entrance configurations as well, so we mark
those configurations with a set of segments. Similarly, we
proceed for joint 4 and 5.

Thus, we can factor the whole configuration space into the
segments of configurations. Moreover, we have all the valid
actions between the neighboring segments. Our algorithm
finds a trajectory of endpoint by recursion (eg. a wavefront
expansion method [13]) in Figure 2.

An embedded local planner finds local paths within each
segments. We maintain a representative configuration for a
segment and the set of actions. In theory, the size of possible
configurations in a segment (Closed Kinematic Chain) can be
large (O(cn−2)) (when c is a constant, and n is the number of
joints). 1 Thus, the embedded local planner moves the joint
to the pivot position, when a joint of the current configuration
differs from the pivot point of the selected action.

B. State Definition in Propositional Logic

Here, we formally define a unit action, the Workspace (W)
and the set of actions (Act). Our dynamic-programming uses
these definitions to pass the set of actions from an inner joint
to the next joint. In this section, we assume that there is no
obstacle (we lift this assumption in Section II-C).

We present a unit action with only 3 parameters: a
previous location of end-effector, a result location of end-
effector, and a location of the pivot joint. For example,
Figure 1(R1) demonstrates a unit action of joint 1 toward
the right direction. (Here, we call the action Move2

(P0,P1,Base).)
Move2

(P0,P1,Base) has two preconditions and a postcondition.
The two preconditions are ‘The end effector of the arm is at
P0’ and ‘The 1st joint is at Base’. The postcondition is ‘The
end effector of the arm is at P1’.

The Workspace of the robot (Wrobot) is the set of dis-
cretized locations that can be occupied by any joint of the
arm in the 2D space. A location in the Wrobot is represented
by the w = (x,y,θ) (x∈ X , y∈Y , and θ ∈Θ, when X , Y , and
Θ are the discretized x axis, y axis, and angular orientations
respectively).

Ai is the set of all actions of the ith joint. Ai(w) is the set
of actions having the same end-effector location w ∈W . wi
and w′i are locations of the ith joint. w j is a location of the
jth joint. An action (Movei

(wi,w′i,w j)
) in Ai(wi) is defined in

PDDL form as follows,

1In some cases, the planning within the segment is much easier than the
planning in the whole configuration space.

Movei
(wi,w′i,w j)

=

 pre : end j(w j)∧ endi(wi)
del : endi(wi)
add : endi(w′i)

endx() is a predicate for the location of the xth joint.
A complex action Movei

(wi,w′i,w j)
∈Ai(wi) means that a unit

left movement of the jth joint at w j changes the location of
the ith joint from wi to w′i. Based on the action of the ith joint,
the movement of the next (i+1th) joint can be described as
follows.

pre :end j(w j)∧ endi(wi)∧ endi+1(wi+1)
del :endi(wi),endi+1(wi+1)

add :endi(w′i),endi+1(w′i+1)

An action of the i+1th joint is built from a precon-
dition (endi+1(wi+1)) and an action (Movei

(wi,w′i,w j)
). That

is, Movei
(wi,w′i,w j)

not only changes the location of the ith
joint but also changes the location of the i+1th joint from
wi+1 to w′i+1. Fortunately, the new action Movei+1

(wi+1,w′i+1,w j)
∈

Ai+1(wi+1) can be defined without the propositions of the ith
joint (endi()), because an action requires only 3 conditions
(one pivot point and two locations).

Movei+1
(wi+1,w′i+1,w j)

=

 pre : end j(w j)∧ endi+1(wi+1)
del : endi+1(wi+1)
add : endi+1(w′i+1)

C. End-effector Space

In general (with many obstacles), the simple workspace-
based representation is not enough to build a correct set of
actions. Figure 3 (Init 2) describes such a situation. The
arm needs to detour an island (floating) obstacle to reach
the goal position. That is the reason why most roadmap
based approaches use the configuration space [14]. To solve
the problem, we group the set of configurations that share
the topology. A representative configuration represents the
set of configurations. We call the set of representative
configurations as End-Effector Space (ES).

The End-effector Space of the ith joint (ESi) is the set of
pairs of a location (w) and its representative configuration
(〈c j〉 j≤i); es = (w,〈c j〉 j≤i) when c j is an angular configu-
ration of the jth joint. Each element is indexed by loc and
conf, that is es(loc) = w and es(conf) = 〈c j〉 j≤i.

With the definition of ES, we represent an action
(Movei

(es(loc),w′i,w j)
∈ Ai(es)) that changes the location of the

ith joint from es(loc) to w′i by the movement of the jth joint
at w j.

D. Homotopic Configurations

Two configurations (Conf1 and Conf2) are Homotopic,
if they are smoothly deformed each other without moving
endpoints. Formally, a homotopy between two configurations
Conf1 and Conf2 is defined to be a continuous function
H : [0,1]→ Y from the unit interval [0,1] to a topological
space Y that includes all the possible configurations such
that H(0) = Conf1 and H(1) = Conf2. We say that two
configurations are homotopic if there is a homotopy between
them and their endpoints are identical.

(A) (Init 2) goal(Init 1) goal

b
ca

Fig. 3: (A) shows the Homotopic relationship among the configurations;
‘a’, ‘b’ and ‘c’ are the configurations of the arm; ‘a’ and ‘b’ are not
Homotopic configurations; ‘a’ and ‘c’ are Homotopic configurations. (Init
1) presents a path (a roadmap) to a goal position while (Init 2) presents
another path to the same goal position. Our planner provides a correct path
based on the current entrance configuration.

For example, in figure 3(A), two configurations ‘a’ and
‘c’ are Homotopic, and ‘a’ and ’b’ are not Homotopic. The
concept of Homotopic Paths is used in another approach [4].
2 However, we use the Homotopic to group configurations
while they use the Homotopic to group paths along which
the center of a mobile robot moves.

III. FACTORING AND PLANNING FOR A ROBOTIC ARM

In this section, we explain our planning algorithm and the
way that we enable factoring and dynamic programming.

A. A Factor-Guided Motion Planning Algorithm

Algorithm:Factor-GuidedMotionPlanning
Input: the start configuration(esstart); the goal configuration(esgoal);

number of steps in planning(depth); the lengths of
pegs({leni}i≤m)

Output: Planned actions
ES0 ← {(xbase,ybase,θbase)} /* A mounted base */
for j← 1 to m(m is the last joint) do

for es ∈ ES j−1 do
foreach angle of the jth joint do
〈es′,act〉 ← SinglePlan(es,ang, len j,A j−1)
if act 6= nil then
foreach es ∈ ES j when es(loc) = es′(loc) do

if es′(conf) and es(conf) are Homotopic then
A j(es) ← A j(es)

⋃
act

return PathPlan(esstart , esgoal , Am, ESm, depth)

Algorithm 1: Factor-GuidedMotionPlanning

Procedure Factor-GuidedMotionPlanning is presented in
Algorithm 1 and its subroutines are presented in Algorithms
2 and 3. Our algorithm partitions the problem domain
at each joint, and each partition precompiles all possible
macro actions 3 for the joint and sends those macro action
descriptions in PDDL to the adjacent outer joint. Algorithm
Factor-GuidedMotionPlanning is given a start and a goal
configuration, the search depth for planning, the lengths of
links and obstacle information. It returns the sequence of
actions that moves the arm to the goal location.

2Two paths having the same initial and goal configurations are homotopic
if one can be continuously deformed into the other.

3We call these actions as macro actions because the actions may include
a sequence of actions.

Algorithm:SinglePlan - Planning for a single joint
Input: an end-effector point(es); the orientation to the next joint(ang);

the length of the j−1th peg(len j); the actions of the jth
joint(A j−1)

es′(loc) ← es(loc) + trans(es(loc),ang, len j) 4

es′(conf) = es(conf) + 〈ang〉 , act j ← /0
foreach act j−1 ∈ A j−1(es) do

Make a new act ′ from act j−1 (pivoting: joint k)
pre: endk(wk)∧ end j(es′(loc))
eff : ¬end j(es′(loc)) ∧ end j(w′j)

if act ′ does not collide with any obstacle then
act j ← act j

⋃
{act ′}

foreach left and right move of the jth joint do
Make a new act ′′ as follows

pre: end j−1(es(loc))∧ endi(es′(loc))
eff : ¬end j(es′(loc)) ∧ end j(w′′j)

if act ′′ does not collide with any obstacle then
act j ← act j

⋃
{act ′′}

return 〈es′, act〉
Algorithm 2: SinglePlan

We discuss subroutines of Factor-GuidedMotionPlanning
in detail. The SinglePlan4 is described in Algorithm 2. It
finds all the macro actions of a specific location of the current
joint given all the accessible possible locations and actions
of the previous joint. The returned macro actions include all
the necessary rotations of internal joints as subroutines. The
actions of the current joint are merged into an existing group
(if there is a homotopic set) or into a new group (otherwise).
The PathPlan in Algorithm 3 receives all the planned actions
as input and returns the sequence of actions as output, if the
goal configuration can be reached by less than depth macro
actions.

This method is similar to Factored Planning [5] in that the
domain is split into sub domains and the subdomains send
messages as a form of actions. However, our algorithm has
important differences. The characteristic of robotics (a large
amounts of shared fluents between consecutive joints) pre-
vents us from using the general Factored Planning algorithm
because the complexity of the algorithm (which depends on
the number of messages of macro actions) is exponential in
the number of shared fluents. This number increases with the
number of joints in the naive use of Factored Planning. Thus,
we modify the algorithm to reduce the sizes of messages.

Our contribution in this regard is that we reduce the
number of messages using the characteristics of our robotic
arm planning problem. With |W | propositions, the number of
potential messages is proportional to the number of possible
pairs of preconditions and effects, i.e., 22|W |. However, the
complexity is reduced if we focus on the fact that the action
requires one proposition (end j(w)) in the precondition and
another proposition (end j(w′)) in the effect. When the w and
w′ are locations of the jth joint in the working space (W),
the number of possible combinations of fluents is only |W |2.

4trans(...) returns the position of next joint given the location of the
current joint, the angular orientation, and the length of peg

B. How Do We Make Factoring Possible?

We reduce the complexity of the planning problem by
grouping partial plans based on the topology of the arm.
Thus, we do not consider a specific configuration of the arm,
if the topology of a configuration is identical to another one
that already exists in our segments. This prevent us from
storing the exponentially many specific configurations.

A local planner is used to find a path between the two
Homotopic Configurations. In Algorithm PathPlan, actions
are validated by a local planner. This can be achieved by any
complete planner (eg. ARA*[1]). Thus, we can find a path
between two Homotopic configurations, if there is a path.

Algorithm:PathPlan
Input: the start(esstart); the goal(esgoal); the actions(A); the

end-effector space(ES); the depth of planning(depth)
j← 1, R0 ← {es′start}, Rtotal = /0, A′ = /0
for j← 1 to depth do

foreach es ∈ R j−1, act(m,es,wi,...) ∈ A(es) do
if act(m,es,wi,...) is valid for es with a local planner then

es′ ← results from act(m,es,wi,...)
Actglobal ← {move(es,es′)}

⋃
Actglobal

Rtotal ← Rtotal
⋃

{es′}

Init(esstart , done0, ¬done1, ..., ¬donedepth)
Goal(esgoal , done0, done1, ..., donedepth)
Search for plans (Φ) in Init, Goal, Actglobal

return Φ

Algorithm 3: PathPlan with a local planner

IV. THE ANALYSIS OF THE ALGORITHM

In this section, we analyze the complexity and correctness
of the suggested algorithm. In the proofs, we assume two
conditions: (1)the local planner can find a path from one
configuration to another, if the two configurations are Ho-
motopic and there is a path between the two; (2) the local
planner terminates within a polynomial time in the number
of joints (O(mh)). These are the sufficient conditions for the
polytime path-planning.

A. Complexity Analysis

Here, we analyze the complexity of our algorithm. We
prove the complexity in the environment with n convex island
obstacles. If we find the path for a m joint robotic arm with
an exact path planning algorithm [9] [4], the complexity is
O(cm) when c is a constant.

Theorem 1: The complexity of our algorithm is bounded
by (When |ESm| is the size of the ESm; |W | is the size of workspace; l is
the length of a larger side of workspace.)

O(m · |W | · |ESm|+ l ·mh) = O(m · l2 · |ESm|+ l ·mh).

Factored Motion Planning
Environments ARA* (sec)

Preprocess (Sec) Planning (Sec)

(A) > 580 19
12
12
27
27

83
(B) 78 5
(C) 17 2
(D) 4 3
(E) >580 9

Fig. 5: Planning times for the different environment setting of Figure 4.
In (A) and (E), ARA* finds no path within 580 secs and cannot continue
due to lack of memory.

Proof: We have all the possible “move” actions between
the axioms (positions). For each joint (O(m)), our algorithm
finds all the reachable positions given a pivot point O(|W |)
and a point in ES O(|ESm|). Given the conditions, the
possible movement is bounded by O(2) because the pivot
point only rotates toward the left direction or the right
direction. The local planner (mh) called at most (O(l)) times.

1) With ‘n’ Island Obstacles: The |ESm| with n islands is
bounded by O(2n · |W |).

Proof: Given an island obstacle, there are at most two
distinct elements (esleft and esright) for a location w. (when
esleft(loc) = esright(loc) and esleft(conf) 6= es1(conf)) For
every island obstacles, the arm can be either left or right side
(eg. esleft,right,...,right). Thus, the size of |ESm| is bounded by
|2n| .5

V. EXPERIMENTAL RESULT

We verify our algorithm by using the environment in
Figure 4 (A)(B)(C)(D)(E). In each figure, the circle indicates
the goal position. (A) has larger complexity (30 DOFs) than
others (20DOFs). The difficulties of (B) and (C) are the
narrow holes that the joints have to pass through. (D) and
(E) have the same experimental settings (joints and obstacles)
except goal positions. However, (E) is much more difficult
than (D) because one needs to find the path that detours
the island obstacle. In (E), many algorithms often fail to
find solution if they use a simple distance-based heuristic
function, or they use a naive reachability method without
considering homotopic configurations.

We compare the performance of our algorithm with ARA*
[1] which is one of the fastest grid-based motion planning
algorithms. ARA* is fast algorithm for easy problems.
However, it suffers from the curse of dimensionality for

5We assume that the arm rings around an island obstacle without a circular
loop.

Initial
Goal

(B)(A) (E)(C) (D)

Result

Fig. 4: (A),(B),(C),(D) and (E) are path planning problems. The arm in (A) has 30 joints (over 1036 states). The arms in (B),(C),(D) and (E) have 20
joints (over 1025 states).

global problems. 7 Thus, we use it as a local planner in
our experiment. That is, our motion planner finds a global
path (a roadmap) in the workspace. Then, the local steps in
the global path is found by the local planner. We use an
algorithm [15] to check the homotopy between two config-
urations. In Figure 5, our methods outperform the original
ARA* method in all case, because it uses simple distance-
based heuristic function. Our algorithm is significantly faster
than ARA* and can plan effectively even when it fails to
plan a path within reasonable time. However, our factor-
guided motion planning needs to preprocess once for new
environment. It respectively takes 19 secs, 12 secs, 12 secs,
27 secs and 27 secs to preprocess settings from (A) to (E).

VI. CONCLUSION

Three contributions of our work are (1) it reduces the
complexity of planning problem by factoring the large con-
figuration space into small segments with smaller sizes; (2)
it takes only polynomial time in the number of joints under
some conditions; and (3) it efficiently know the feasibility
of the planning problem, when the goal is not reachable.
Therefore, it is promising for inclusion of such algorithms
in a larger-scale cognitive architecture. In the future work, the
architecture for this arm may fit well with our decomposition
approaches to AI [16], planning [5], and control [17].

VII. ACKNOWLEDGEMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 05-46663

REFERENCES

[1] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* search
with provable bounds on sub-optimality,” in NIPS’03, S. Thrun,
L. Saul, and B. Schölkopf, Eds. MIT Press, 2003.

7Here, global problems are the complex problems that need to analyze
the global environment setting such as locations and sizes of obstacles.

[2] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning.” in ICRA’00, 2000, pp. 995–1001.

[3] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Proba-
bilistic roadmaps for path planning in high dimensional configuration
spaces,” IEEE Trans. on Rob. and Auto., vol. 12, no. 4, pp. 566–580,
1996.

[4] O. Brock and O. Khatib, “Real-time replanning in high-dimensional
configuration spaces using sets of homotopic paths.” in ICRA’00, 2000,
pp. 550–555.

[5] E. Amir and B. Engelhardt, “Factored planning,” in Proc. Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI ’03).
Morgan Kaufmann, 2003, pp. 929–935.

[6] R. Brafman and C. Domshlak, “Factored planning: How, when, and
when not,” in Proc. National Conference on Artificial Intelligence
(AAAI ’06). MIT Press, 2006.

[7] E. Kelareva, O. Buffet, J. Huang, and S. Thiebaux, “Factored planning
using decomposition trees,” in Proc. Twentieth International Joint
Conference on Artificial Intelligence (IJCAI ’07). Morgan Kaufmann,
2007.

[8] J. Canny, The Complexity of Robot Motion Planning. Cambridge,
MA: MIT Press, 1987.

[9] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
manipulators,” Int. J. of Rob. Res., vol. 5, no. 1, pp. 90–98, 1986.

[10] J. T. Schwartz and M. Sharir, “On the Piano Movers’ Problem: I.”
Commu. on Pure and Applied Math., vol. 36, pp. 345–398, 1983.

[11] L. Yang and S. M. LaValle, “A framework for planning feedback
motion strategies based on a random neighborhood graph.” in ICRA.
IEEE, 2000, pp. 544–549.

[12] O. Brock and L. Kavraki, “Decomposition-based motion planning:
A framework for real-time motion planning in high-dimensional con
guration spaces,” in ICRA’01, 2001, pp. 1469–1474.

[13] J. Barraquand and J.-C. Latombe, “Robot motion planning: a dis-
tributed representation approach,” Int. J. Rob. Res., vol. 10, no. 6,
pp. 628–649, 1991.

[14] R. Geraerts and M. H. Overmars, “Reachability analysis of sampling
based planners,” in ICRA’05, 2005, pp. 406–412.

[15] S. Cabello, Y. Liu, A. Mantler, and J. Snoeyink, “Testing homotopy
for paths in the plane,” in SCG’02. New York, NY, USA: ACM Press,
2002, pp. 160–169.

[16] S. A. McIlraith and E. Amir, “Theorem proving with structured
theories.” in IJCAI’01, 2001, pp. 624–634.

[17] E. Amir and P. Maynard-Zhang, “Logic-based subsumption architec-
ture.” Artif. Intell., vol. 153, no. 1-2, pp. 167–237, 2004.

