Greedy Algorithms for Sequential Sensing Decision

Hannaneh Hajishirzi*
Afsaneh Shirazi
Jaesik Choi
Eyal Amir

University of Illinois at Urbana-Champaign

* speaker
Motivation

- Search engines:
 - Updated repository of web pages
 - Not monitor every page every time

→ Important to detect change of web pages ASAP with minimum cost
- News page changes frequently
- Decide when to sense “Obama” and “Clinton” pages
Problem

- **Input:**
 - Web pages + change dependency diagram

- **Goal:**
 - Detect change ASAP
 - Minimum (or an approximate) number of sensing actions
Our Approach

- Model the problem as a **Partially Observable Markov Decision Processes**
 - Efficient algorithm using the special structure of our problem

- **Contribution:** tractable solution for sensing decisions
Decision Making as a POMDP

- **Belief state:** \{C, NC\}
 - C = 1: change occurs at this time
 - NC = 1: Not-captured change occurred since the last sensing action

- **Action:** a
 - Sense, idle

- **Reward function**
 - Positive reward for correct sensing
 - Penalty for sensing late
 - Error for wrong sense
Optimal Sensing Decision

- General POMDP approach
 - Assign value to each belief state
 - Immediate reward + expected future rewards
 - Optimal decision:
 - Maximize value function

- Our approach:
 - Change value function representation
 - Use properties of this new representation
 - Tractable solution for sensing decision
Value Function Representation

- Sum of rewards up to the first sensing action + value of a fixed belief state

\[
V(b_t) = \max_x \left\{ P(ch < t)(\text{Reward when } ch < t) \\
+ P(t < ch < t + x)(\text{Reward when } t < ch < t + x) \\
+ P(ch > t + x)(\text{Reward when } ch > t + x) \\
+ \gamma^{x+1}V(b^*) \right\}
\]
Value Function Property

- **Theorem:**
 - Let $V(b) = \max_x f(sense@t + x)$
 - If $f(sense@t + 1) < f(sense@t)$ then
 $$f(sense@t + m) < f(sense@t) \text{ for every } m > 1$$

- **Implies**
 - The first time that $f(.)$ starts to decrease is the time to sense
Proof Intuition

- Expand: \[f(sense @ t + x) - f(sense @ t) \]

- Notice:
 1) \[f(sense @ t + 1) < (sense @ t) \]
 2) \[P(ch > t + x) < P(ch > t + 1) \]
Algorithm (One Page No Observation)

- **Greedy**: Decide whether to sense or not at the current time step t

 - **Algorithm**:

 If $f(sense@t) - f(sense@t+1) < 0$

 sense

 else : stay idle
Complexity

\[f(sense@t + 1) - f(senes@t) \]

- \(P(nc_t, nc_{t+1}) \) : One step progression

- \(V(b^*) \) : Computed offline
 - \(b^* \) : belief state that we have sensed at previous time
Model:

- K: hidden and observable nodes
- Fully observable nodes in K
- C has no parent from K nodes
- Example: HMM
Algorithm (One Page with Observations)

- Approximation of the optimal policy
 - Assumption: decision about the immediate action is independent of the future observations
 - Optimal solution given the current observations
Algorithm
(One Page with Observations)

- Greedy algorithm:
 - Sense the page if value function starts to decrease
 - All the probabilities are conditioned given observations

- Theoretical Validation:
 - Still, \(P(ch > t + x \mid \text{obs}) < P(ch > t + 1 \mid \text{obs}) \)
 - Therefore,

\[
\text{If } f(sense \@ t + 1) < f(sense \@ t) \text{ then } \\
f(sense \@ t + m) < f(sense \@ t) \text{ for every } m > 1
\]
Multiple Sensing Variables

Example: factored HMMs

Sensing variables

O: observation node
Approximate Algorithm (Multiple Pages)

- **Goal:**
 - Approximate the optimal composite policy
 - Find subset of pages to sense

- **Algorithm:**
 1. Find the policy for each page
 2. Merge the results
Theoretical Verifications

- Value function for the composite policy = sum of value functions for single policies
 \[V(b) = V_1(b_1) + V_2(b_2) \]

- Proof Intuition:
 - \(V^k(b) \) value function for the k-step policy
 \[V^k(b) = V_1^k(b_1) + V_1^k(b_2) \]
 - Limit \(k \to \infty \)
Theoretical Validation

- Greedy algorithm works for each single policy

- Proof Intuition:

\[P(ch > t + x, \text{observations}) < P(ch > t + 1, \text{observation}) \]
Experiments

- Simulated data
 - Randomly generate change prior, observation model, reward
 - Randomly generate a sequence of change and observations
 - Compute sum of rewards for the sensing decisions

- Wikipedia pages
Running Time Comparison

- **MOCHA**
- **Perseus**
- **Witness**
- **Our algorithm**

The graph shows the running time comparison for different algorithms as the number of states increases.
- Higher value for the policy returned by our algorithm vs. two other POMDP algorithms
• A (strong) assumption: the set of observable pages (nodes) is a vertex cover of G.

A connectivity graph

Our assumption

A set of Factored HMMs

Data from Wikipedia
Data from Wikipedia

- Three wikipedia pages
 - Observable: Democratic Party presidential primaries, 2008
 - Hidden: Barack Obama, Hillary Clinton

- History of each page
 - 10,000 updates for since 2004
 - Descretize time (1 hour period)
Results on Wikipedia

- (Value) sum of rewards vs. time step
- Oracle: perfect scenario (captures change whenever occurs)
Conclusions

- Formalization to the problem of detecting change using POMDPs
- Tractable algorithm for sensing decisions

- Limitations:
 - Do not know the bound of approximation compared to the oracle
Future Work

- Include actions that change the world (e.g. moving)
- Extend to the case of multiple sensing variables with no constraint over dependencies
- Learn the model
Value Function Representation

\[V(b_t) = \max_x (\]
\[P(ch < t). (\text{Reward for capturing change + penalty for sensing late}) \]
\[+ P(t < ch < t + x)(\text{Reward for capturing change + expected penalty for sensing late}) \]
\[+ P(t + x < ch) \text{ (Penalty for error sensing)} \]
\[+ \gamma^{x+1} V(b^*) \]

) \text{ b*: Belief state of the system after the sensing action}
Complexity

\[f(\text{sense}@t + 1) - f(\text{senes}@t) = \]
\[P(C' = 1)(\text{constant}) \]
\[+ P(C_t = 0, C_{t+1} = 1)(\text{constant}) \]
\[+ P(C_t = 0, C_{t+1} = 0)(\text{constant}) \]
\[+ (\gamma - 1)V(b^*) \]

- One step progression

- \(b^* \): belief state that we have sensed at previous time
 - \(V(b^*) \) Computed offline