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Abstract— Robotic manipulation is important for real, phys-
ical world applications. General Purpose manipulation with a
robot (eg. delivering dishes, opening doors with a key, etc.)
is demanding. It is hard because (1) objects are constrained
in position and orientation, (2) many non-spatial constraints
interact (or interfere) with each other, and (3) robots may have
multi-degree of freedoms (DOF). In this paper we solve the
problem of general purpose robotic manipulation using a novel
combination of planning and motion planning. Our approach
integrates motions of a robot with other (non-physical or
external-to-robot) actions to achieve a goal while manipulating
objects. It differs from previous, hierarchical approaches in that
(a) it considers kinematic constraints in configuration space (C-
space) together with constraints over object manipulations; (b)
it automatically generates high-level (logical) actions from a C-
space based motion planning algorithm; and (c) it decomposes
a planning problem into small segments, thus reducing the
complexity of planning.

I. INTRODUCTION

Algorithms for general purpose manipulations of daily-life
objects are still demanding (e.g. keys of doors, dishes in a
dish washer and buttons in elevators). However, the complex-
ity of such planning algorithm is exponentially proportional
to the dimension of the space (the degree-of-freedom (DOF)
of the robot and the number of objects) [1]. It was shown
that planning with movable objects is P-SPACE hard [2], [3],
[4]. Nonetheless, previous works examined such planning in
depth [5], [6], [7], [8], [9], [4] because of the importance of
manipulating objects. The theoretical analysis gave rise to
some practical applications [9], [10], [4], [11], but general
purpose manipulation remains out of reach for real-world-
scale applications.

Most of current algorithms (or architectures) for manip-
ulating objects [12], [9], [4] divide the planning problem
into high-level reasoning and low-level motion planning.
Given propositions and abstract actions, a high-level planner
finds an abstract plan that leads to a goal. Then, the low-
level motion planner finds plans for each set of actions in
the abstract plan. The low-level motion planner considers
obstacles and the kinematic constraints in C-space.

Unfortunately, previous algorithms [12], [9] use manually
encoded interfaces between the high-level layer and the
low-level layer. That is, all possible actions (eg. push the
button and insert a key) in the high-level reasoning system
should be manually defined in the low-level motion planner.
This manual encoding is difficult and imprecise many times,
leading to costly and error-prone products, especially in
complex domains and tasks.
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We minimize manual encodings using the reachability of
objects. That is, logical actions are extracted from a tree
(planned by a motion planning algorithm), if the actions
change the reachability of objects (i.e. a switch can be
reachable by opening a door).

Our algorithm provides a path of a robot given following
inputs: configurations of a robot and objects; constraints
between objects; an initial state; and a goal condition.1 We
use logical expressions to represent both spatial constraints
in C-space (e.g. collision) and constraints in state space (we
define them formally in section IV). We automatically build
a set of actions from a motion planner, while it was done by
hands in previous works.

In detail, our algorithm unifies a general purpose (logical)
planner and a motion planner in one algorithm. Our algo-
rithm is composed of three subroutines: (1) extracting logical
actions from a motion planner, (2) finding an abstract plan
from the logical domain, and (3) decoding it into C-space.
It extracts PDDL actions [13] from a tree constructed by
a motion planner in C-space. Then, it combines extracted
actions with a given KBobject (Knowledge Base) that has
propositions, axioms (propositional formulae) and abstract
PDDL actions. To find an abstract plan efficiently, we auto-
matically partitioned the domain by a graph decomposition
algorithm before planning. In the planning step, an abstract
plan is found by a factored planning algorithms [14], [15]
which are designed for the decomposed domain. In decoding,
a motion plan is found from the abstract plan.

We argue that the complexity of a planning problem is
bounded by the treewidth of the encoded KB. One may
think some analogy between the treewidth of KB in this
paper and the number of mutually-interfering objects in
the motion planning literature. However, the treewidth is
more general expression because KB has more expressive
power than the conventional C-space. In addition, this work
proposes two improvements in terms of efficiency. One
improvement is to use a factored planning algorithm for the
decomposed domain. The other is to encode actions on behalf
of workspace which is much smaller than C-space.

This approach is a unique decomposition-based path plan-
ning algorithm. We minimize manual encodings which are
required to manipulate objects. Both (kinematic) constraints
of the robot, and constraints of manipulating object are con-
sidered in our planning. It is efficient because its efficiency
depends only on the workspace (2D or 3D), when appropriate

1For each object, we provide a function which maps from a configura-
tion to discrete states (labels) of objects, if discrete states are required for
the provided constraints of objects (KBobject).
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Fig. 1: This figure shows an example of manipulating objects with a
robotic arm. The goal is to take care of beans in a glasshouse. Beans require
water and light everyday. The robot will provide water and light for beans.
To accomplish this goal, the arm needs to manipulate objects such as doors
and switches.

conditions are met. Moreover, our method calculates actions
of a robot once and can reuse them for other tasks.

Section II presents related works. Section III provides a
motivational example. Section IV explains our encoding to
build a KB. Sections V and VI show our algorithm. Finally,
section VII provides experimental results followed by the
conclusion in section VIII.

II. RELATED WORKS

Here, we review the related works in two aspects: (1) using
logical representation in robot planning; and (2) modifying
the motion planning algorithm to achieve complex task (eg.
manipulating objects). One may see the former way as top-
down and the latter way as bottom-up.

[9] presents a well-integrated robot architecture which
controls multiple robots. It uses logical representations in
higher level planners and C-space based motion planners
in lower-level planning. However, the combination of two
planners is rather naive (manual).

Recently, [11] provides an improved way to combine the
Linear Temporal Logic (LTL) to control continuously moving
cars in the simulated environment.2 However, their model is a
nondeterministic automata, while our model is deterministic.
Due to the intractability of nondeterministic model, their
representation is restricted to a subset of LTL to achieve
a tractable (polynomial time) algorithm. Experiments are
focused on controlling cars instead of manipulating objects.

Motion planning research has a long-term goal of building
a motion planning algorithm that finds plans for complex
tasks (eg. manipulating objects). [4] suggests such a planning
algorithm based on a heuristic planner [2] which efficiently
relocates obstacles to reach a goal location. Recently, it
was extended to embed constraints over objects into the C-
space [16]. In fact, the probabilistic roadmap method [7]
of the algorithm is highly effective in manipulating objects.
However, we argue that our algorithm (factored planning) is

2Any First Order Logic (FOL) sentences can be reduced to Linear
Temporal Logic (LTL). Thus, LPL is a superset of FOL.
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Fig. 2: This is a possible tree decomposition for the toy problem
of figure 1. The shared propositions appear on edges between sub-
groups. For example, a proposition (‘@door3 lock’) is shared by two
subgroups (‘Main Room’ and ‘Small Room’) because the proposition is
used by actions of two subgroups (respectively ‘Open(Close) door3’
and ‘Turn shower on(off)’). The KB is decomposed into small groups
based on the geometric information (eg. the configurations of the room).

more appropriate in terms of generality and efficiency than
a search-based (with backtracks) heuristic planner.

Other works also make efforts in this direction to build
a motion planning algorithm for complex tasks. [17] solves
a motion planning problem focused on safety with logical
constraints represented with LTL . [18] focuses on learning
actions for manipulating objects based on the explanation
based learning [19]. They use a classical hierarchical planner
in planning. [20] provides an idea that extracts the proposi-
tional symbols from a motion planner. The symbols are used
to check the satisfiability of the planning problems. [21] uses
a potential field method to achieve complex tasks with two
arms. However, the main interests of these works are not
planning algorithm, or are limited to the rather simpler tasks.

III. A MOTIVATING EXAMPLE

Figure 1 shows a planning problem. The goal is to provide
water and light to beans. The robotic arm should be able
to manipulate buttons in the spatial space to provide water
and light. There are also non-spatial constraints. At any time
either the shower is off or door3 is closed or both.

The planner requires both a general purpose (logical) plan-
ner and a motion planner. It requires general purpose planner
because the arm needs to revisit some points of C-space
several times in a possible solution. The way points may in-
clude ‘Open door1’, ‘Close door1’, and ‘Turn light on’.
Note that the internal state (values of propositions) can be
different, whenever the robot revisits the same point in the
C-space. It is certainly motion planning problem because the
kinematic constraints of the arm should be considered. For
example, the arm should not collide with obstacles, although
the hand of the arm may contact objects.

Hierarchical planners have been classical solutions for
these problems. A hierarchical planner takes in charge of
high level planning. A motion planner takes in charge of
low level planning. However, researchers (or engineers) need
to define actions of the robot in addition to axioms among
propositions for objects. Without the manual encodings, the
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Fig. 3: This figure illustrates a process to encode a motion plan into
KBM . The process is follows: (1) a motion plan (a tree) is built by a
motion planning algorithm; (2) actions which changes the states of objects
are found; (3) propositions are generated (and grouped) based on the found
actions; and (4) a KBM is created. Here, we assume that we have a function
which provides discrete states of objects given the configuration of an object
in finding actions (2). In this figure, the door1 in figure 1 and 2 is closed
in a set of states (A). The door1 is moved little in B. However, the door1

is not fully opened. Thus, configurations in the area D is not connected.
The area C corresponds to the pushed light button on figure 1 and 2.

hierarchical planner may need to play with the large number
of propositions (O(exp(DOFrobot))=|discretized C-Space|)
, when DOFrobot is the DOF of the robot. With such naive
encoding, computational complexity of planning become
(O(exp(exp(DOFs)))).

Moreover, naive hierarchical planners often have difficulty
to find solutions for the following reason. Firstly, it requires
interactions between subgoals. For example, the arm must
go into the “Bean room” and turns the “light” on (subgoal)
before it goes into the “small room” and turns the “shower”
on (subgoal). This is essentially the ‘Susman anomaly’ which
means that the planner dose one thing (being in the Bean
room) and then it has to retract it in order to achieve other
goal (turning the shower on). Thus, it may require several
backtrackings in planning. Secondly, there are two ways
of (in principle) achieving “on(light)”: (1) going through
the small room; and (2) opening door to the Bean room
from the Arm-base room. Unless manual encoding is given
by an engineer, The latter way (going through the small
room) is fine from the perspective of hierarchical planning.
However, it will not work in practice because the arm is not
long enough (kinematics). Formally, there is no downward
solution.

Thus, this toy problem shows that (1) hierarchical planning
does not work with a naive (simple) encoding, and (2) a
complete encoding is too complex to encode manually. We
are interested in general principles that underlie a solution
to this problem.

In motion planning literature, hybrid planners are used
to address these issues [22], [23], [9], [11], [17]. However,
these are either hard to build due to manual encodings, or
infeasible to conduct complex tasks due to the curse of
dimensionality of expanded C-space. The size of C-space
of a hybrid planner exponentially increases with additional
movable objects and given propositions. Thus, solving a
complex problem may require extensive search.

Here, we seamlessly combine the general purpose plan-
ning and the motion planning. Our planner finds all research-
able locations and possible actions that change states of
object, states of propositions, or the reachable set of objects.3

Thus, high-level planner can start to plan based on the actions

3Here, we assume that we know states of objects without uncertainty
as in [11].
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Fig. 4: This shows an operation (or algorithm) to combine the extracted
KBM with pre-existing KBO . KBO is independently given in a general
form to a robot. Thus, KBO can be reusable for robots with different
configurations space. Meanwhile, KBMP is specific to a robot. Thus, some
actions (e.g. act7 and act8) in KBO are invalidated by the KBM .

extracted by a motion planner.4 The number of actions and
states can be different according to constraints of the robot.

However, the number of actions and states can be still
intractable. To solve this problem, we partition the domain
into the smaller groups of actions and states. For example,
the domain can be partitioned as shown in figure 2. It is
composed of three parts: (1) operating the shower switch;
(2) operating the light switch; and (3) operating in between.
The partition can be automatically done with approximate
tight bound [24], [25].

A factored planner [14] efficiently finds a plan with the
partitioned domain. The partitioned groups are connected as
a tree shape. In each partitioned domain, our factored planner
finds all the possible effects of the set of actions in each
factored domain. Then, the planner passes the planned results
into the parent of the partition in the tree. In the root node,
all the valid actions and effects are gathered. The planner
finds a plan for the task, if it exists.

Then, we use a local planner to find a concrete path in C-
space at the final step. However, there is no manual (explicit)
encoding (eg. ‘turning the switch A’) between two layers,
except logical constraints and mapping functions provided
as input.

IV. PROBLEM FORMULATION

A. Combining C-space and State Space

Here we suggest new problem formulation to combine
C-space of an object-manipulating robot and KB (defined
in the next paragraph) of objects and propositions. An ob-
ject, located in a specific workspace, generates propositions
into KB. Other axioms (propositional formulae) and actions
(PDDL[13]) are given for the propositions. We will call this
KB as CPMP (Combining Planning and Motion Planning).

Definition CPMP (Combining Planning and Motion Plan-
ning) is a Knowledge Base which is composed of proposi-
tions for states of a robot and objects, axioms of a robot and
objects, and actions of a robot. It encodes a set of points
in C-space into a proposition (pc) in the CPMP. Actions
of a robot are encoded into actions of the CPMP. A set of
propositions and actions can be constrained each other by an
axiom (a propositional formula).

4Our planner may have more actions and states than the hand-encoded
case.
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Fig. 5: This example shows a situation in which one position in the
workspace can correspond to two different states in the combined space
(CPMP). Although the physical locations of the arm and button are same in
the workspace, an internal state (eg. light is on) is different. The situation can
be represented when C-space and state space in KB are combined (CPMP),
even though it is not possible to represent in the classical C-space alone.

A CPMP is composed of propositional symbols, axioms,
and actions. The propositional symbols (P ) represent states
in binary values. The axioms (Axiom) are propositional for-
mulae. The actions (Action) represent the pair of precondi-
tions and effects of a robot motion. It has a set of propositions
that represents states of a robot, objects and internal states.
External states are propositions in KBM extracted from C-
space. Internal states are propositions explicitly given in
KBO.

It also include a set of axioms. The axioms (logical
formula) represent relations among states of objects. When
a state of an object (oi) is oi

1 (e.g. light), the state of another
object (oj) is constraints oj

1 (e.g. ¬shower).5 It is represented
as follows.

oi
1 ↔ oj

1

In CPMP, a set of actions, KBM , is generated from a tree
(or graph) in C-space built by a motion planning algorithm
as shown in figure 3. In detail, two points (p1 and p2) in the
network are connected by a edge (an action of the robot).
This can be simply encoded as follows.

Action : Move(p1, p2)
Precond : p1

Effect : p2 ∧ ¬p1

When the action changes the internal state of an object (o)
from o1 to o2, the action can be encoded as follows.

Action : MoveObject(p1, p2, o1, o2)
Precond : p1 ∧ o1

Effect : p2 ∧ o2 ∧ ¬p1 ∧ ¬o1

Figure 5 represents the expressive power of CPMP . It
represents a situation which can be described in CPMP
but C-space. The same physical locations are different states
in CPMP because the state of the light is changed.

5Such axioms are manually encoded. However, the encodings are
independent of a specific robot. Thus, the encodings can be reusable to
other types of robot. Moreover, there are algorithms [26], [27] which can
generate such axioms with a sensor-mounted robot.
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Fig. 6: This figure represents an action which changes states of the object
(Door1) to change the reachable set of objects. Before doing the action
(act9B → B′), the set of reachable objects are { Door1, Door3, and
Light button }. After the action, { Door2, Shower button } are also
included in the reachable set.

A CPMP has following properties.
• A CPMP has more expressive power than a C-space,

if no two configurations in C-space can distinguish the
two internal states.6

• It may reduce the number of propositions in CPMP ,
if spatial locations of end-effector are well-defined into
disjoint sets. In each disjoint set, all spatial locations of
end-effector have an identical internal state. Thus, any
edge between the two disjoint sets changes some of the
internal state.

Lemma 1: The complexity of planning problem in the
CPMP is as hard as P-SPACE.

Proof: Any motion planning problem (P-SPACE hard)
with movable objects can be reduced to a planning problem
in CPMP . Suppose that CPMP includes only external
propositions which are extracted from the motion planning
algorithm.

B. Encoding with Mapping Functions and Reachability

Here, we suggest an automatic encoding for moving
objects with maintaining consistent states given mapping
functions7 and reachability of objects. When a robot ma-
nipulates movable objects, it changes C-space of the robot.
Hybrid systems[22], [23], [9] consider each C-space as a
mode. Then, each manipulation connects two distinct modes.
However, the size of the space is exponentially proportional
to the number of objects and the number of joints. To address
this issue, we group a set of modes based on the states of
propositions and reachability of objects as shown in figure 3
and 6.

We register an action (an edge between two points ex-
tracted from a motion planner) into CPMP in following two
cases. The first case is when two points have different states
in CPMP with a mapping function as shown in figure 3.
We validate abstract PDDL actions which are realized by
the action. The second case is when an edge changes the
set of reachable objects or one of mapping functions as

6C-space normally takes into account configurations which only con-
sider spartial locations of a robot or objects.

7A mapping function provides a state of a proposition (eg. object) given
a configuration of objects and a robot.



shown in figure 6.8 Thus, we build a hypergraph whose
nodes are sets of modes (C-space) which have the same
state in terms of mapping functions and reachable objects.
Our algorithm extensively searches actions with a resolution
complete motion planner until no new action is found in the
hypergraph given a specific resolution.

Lemma 2: The size of the discretized C-space for a robot
manipulating n objects with given propositions in CPMP is
bounded by O(exp(|objects| + n + p)), when |objects| is
the number of objects, n is the DOF (Degree of Freedom)
of the robot, and p is the number of propositions.

Lemma 3: The number of possible actions (edges) in
the discretized C-space for objects is only bounded by
O((|objects|) · exp(|objects|)), when the robot moves one
object with an action.

Proof: From a point in C-space of object
O(exp(|objects|)), we can choose an object O(|objects|)
to change states.

V. FINDING A SOLUTION IN CPMP

We provide a naive algorithm that solves a task in CPMP.
Then, we provide two improvements: (1) that solves the
problem in the (smaller) factored KBs; and (2) that reduces
the number of propositions in CPMP using workspace.

A. A Naive Solution

Given a task of CPMP, NaiveSolution finds a solution.
It may use a general purpose planner (GeneralP lanner)
to find an abstract solution. Then, (LocalMotionP lan)
encodes a path in C-space.

Algorithm:NaiveSolution
Input: r(a robot), KBO(KB of objects), sstart(initial state), and

sgoal(goal condition)
Output: pathconcrete(Solution)
KBM ← FindActionFromMP(r)
CPMP = Γ(KBM , KBO)
pathabstract ← GeneralPlanner( CPMP , sstart, sgoal)
pathconcrete ← LocalMotionPlan( pathabstract )

Algorithm 1: NaiveSolution provides a path for a robot. It uses
a general planner (GeneralP lanner) to find an abstract solution.
Then, it is encoded into the path in the C-space by a motion plan
(LocalMotionP lan).

B. Tree Decomposition of KB with Objects

Given a KB, finding a tree-decomposition of the minimum
treewidth is a NP-hard problem. However, the complexity
is only bounded by the treewidth of CPMP, if a tree-
decomposition is found by an efficient heuristic [24], [25].

Theorem 4: The complexity of planning in CPMP is
bounded by O(exp(tw(CPMP ))) if the tree-decomposition
is given.9

Proof: Proofs in [15], [25] can be easily modified to
prove this theorem.

8The reachable objects are added to preconditions and effects respec-
tively.

9tw(KB) is the treewidth of KB.
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Fig. 7: This figure shows a mapping function (f()) from a C-space to
an EF-Space. p1, p2, and p3 in C-space are mapped into p′ in EF-Space.
The connected lines ((p1, p2) and (p2, p3)) represent the first condition of
Theorem 3. The circles represent the second condition.

C. From Exponential C-space to Polynomial EF-Space

In this section, we provide a generalized method which
project C-space into much smaller workspace. It is an exten-
sion of our previous work [28]. it efficiently finds a solution
when the projection method is applicable. Here, we want to
transform C-space into a smaller space, EF-Space, using a
mapping function f(). The function (f()) maps each point
(p) in C-space into a point (p′) in EF-Space with satisfying
following conditions.

1) When P is a set of points whose image are p′ in EF-
Space (f(p) = p′), any pair of two elements (p1, p2 ∈
P ) is connected each other in C-space;

2) When two points (p and q) are mapped into two points
(p′ and q′) in EF-Space. p and q are connected neighbor
if and only if p′ and q′ are connected neighbor.

Two points are connected neighbor means when they are
directly connected in the space.

Theorem 5: The complexity of motion planning in EF-
Space is bounded by following

O(EF-Space) ·O(maxep∈EF-Space(ball(Pep))).

Pep is a set of points whose image is ep. (That is, Pep =
{p|f(p) = ep}) The ball(P ) is volume of the ball which
includes P.

Proof: Given a motion planning problem (an initial
configuration and goal one), a path in EF-Space can be found
in O(EF-Space) with a graph search algorithm. Given the
path in EF-Space, one needs to search the whole ball in
worst case.

One simple example of EF-Space is the workspace of
end-effector. Suppose that the points in C-space are mapped
into the points of end-effector in workspace. One can build
an algorithm that finds all the neighboring points from the
innermost joint (or wheel) to the outermost joint with a
dynamic programming. If points of the previous joint are
connected to all neighboring points, the neighboring points
of the current joint are found by a movement of current
joint (current step) or a movement of any previous joint
(previous steps). The found connected points in workspace
satisfy the second conditions, if the first condition holds in
the workspace.



In worst case, the first condition is hard to satisfy. In the
environment, the mapping function (f ) should be bijective.
Thus, the EF-Space is nothing but the C-space. However, the
first condition holds in many applications where the distance
between obstacles (or objects) and the robot is far enough.
That is the theoretical reason why the planning problem in
the sparse environment is easy even in C-space.

Moreover, one can find another EF-Space considering
topological shape of robot [28]. In the space, two points
(p1 and p2) are mapped into the same point p′1 if two
configurations (p1 and p2) are homotopic, and they indicate
the same end point. Otherwise, another point p′2 is generated
in the EF-Space. In 2D, two groups of configurations are
divided by an island in right and left sides. Thus, the
EF-Space is exponentially proportional to the number of
island obstacles. However, EF-Space itself is bounded by
the workspace whose size is polynomial to the number of
joints. Thus, it is much smaller than the C-space and rather
larger than the workspace.

VI. A UNIFIED MOTION PLAN

We present our algorithms in this section. The main
algorithm , UnifiedMotionPlanner (Algorithm 2), is com-
posed of three parts: FindActionFromMP (Algorithm 3);
FactoredPlan (Algorithm 4); and LocalPlanner. The goal of
UnifiedMotionPlanner is to find a solution to achieve a goal
situation.

Algorithm:UnifiedMotionPlanner
Input: r(a robot), KBO(KB of objects), sstart(initial state),

sgoal(goal condition)
Output: pathconcrete(Solution)
KBM ← FindActionFromMP(r)
CPMP = Γ(KBM , KBO)
KBTree ← PartitionKBtoTree(CPMP )
pathabstract ← FactoredPlan( KBTree, sstart, sgoal )
pathconcrete ← LocalPlan( pathabstract )
return pathconcrete

Algorithm 2: UnifiedMotionPlaner finds all the reachable locations
and actions in each location with FindActionFromMP. A motion planner
is embedded in FindActionFromMP to extract abstracted actions in
C-space. Then, PartitionKBtoTree partitions the CPMP into a tree.
FactoredPlan finds a solution given the pair of initial and goal condition
in the partitioned tree domain. The LocalPlan finds a concrete path for
the robot.

A. FindActoinFromMP
FindActionFromMP searches all the reachable locations

and actions in C-space or EF-Space. In both cases, it has
a dramatically reduced space.

B. FactoredPlan

FactoredPlan finds a solution after factoring the domain
(the space of end-effector in workspace) into small domains.
It decomposes the domain into a tree in which each parti-
tioned group becomes nodes, and shared axioms appear on
a link between nodes. Then, it finds partial plans for a node
and its children nodes with assuming that the parents nodes
may change any shared states in between. After all, it finds
a global solution in the root node.

Algorithm:FindActionFromMP
Input: r(a robot)
Output: KBM (extracted actions)
MPTree ← a random tree in C-space built by a motion planner (e.g.
Probabilistic Roadmap, Factored-Guided Motion Planning)
for each edge (eij ) ∈ MPTree do

if state(pi) 6= state(pj) then
KBM ← KBM

⋃ {
actij(state(pi) ∧ pi → state(pj) ∧ pj ∧ ¬pi) }
KBM ← KBM

⋃ {
actji(state(pj) ∧ pj → state(pi) ∧ pi ∧ ¬pj) }

return KBM

Algorithm 3: . FindActionFromMP finds all abstract actions for a
robot. A motion planner (eg. FactorGuidedPlan or RoadmapMethod)
recursively finds all the reachable locations and actions. Then, the
algorithm insert actions of each configuration (cij ) of objects in the
workspace. It assume that the object is in the configuration (cij ). Thus,
the condition (configuration of objects) is combined into the actions
(actij ). The union of all actions becomes the KBM .

Algorithm:FactoredPlan
Input: KBTree (partitioned KB as a tree), sstart (initial states),

sgoal (goal condition)
Output: pathabstract (An abstract plan)
depth ← (predefined) number of interaction between domains.
for each node(KBpart) in KBTree from leaves to a root do

Actab ← PartPlan( KBpart, depth) .
SendMessage( Actab, the parent node of KBpart )

pathab ← a solution from sinit to sgoal in the root node of
KBtree

return pathab

Algorithm 4: FactoredPlanning algorithm automatically partitions
the domain to solve the planning problem (from sinit to sgoal). It
iterates domains from leaves to the root node without backtracks. In
each node, PartPlan finds all possible actions that change shared states
in the parents node. PartPlan assumes that the parent node may change
any states in the shared states in between. The planned actions in the
subdomain become an abstract action in the parent node. They are sent
by SendMessage.

VII. AN EXPERIMENT IN SIMULATION

In this preliminary simulation, we build our algorithm for a
task that pushes buttons to call numbers. There are 8 buttons
in total. 4 buttons (key1(P1), key2(P2), unlock(P3), and
lock(P4)) are used to lock (and unlock) the buttons. Other
4 buttons (#A(P5), #B(P6), #C(P7) and Call(P8)) are
used to make phone calls. Initially, the button is locked, the
robot needs to push unlock buttons after pushing both key
buttons (P1 and P2). Then, the robot can make a phone
call with pushing the Call button (P8) after selecting an ap-
propriate number among #A(P5), #B(P6), and #C(P7).
After a call, the buttons are automatically unlocked. We
encode such constraints and action in KBO.

To build KBM , we build a tree from a randomized
algorithm with 80000 points in C-space. With a labeling
function that returned the states of buttons, we found 33
edges in the tree10. They are encoded into 8 actions in KBM

for 8 buttons. Then, the combined KB (CPMP ) is used to
find a goal (calling all numbers (#A, #B, and #C). The
returned abstract actions are decoded into a path on the tree

10We simplify the manipulations for attaching and detaching buttons



Fig. 8: This is a capture of the motion of push button in the wall in
experiments. The robot has 5 DOFs (rotational joints on the base and 4
revolute joints on the arm). We do experiment with increasing the number
of joints from 2 to 9.

of motion plan. Figure 8 is a snapshot of the simulation.11

In this experiment, we focus on extracting actions from a
motion planning algorithm, because the factored planer itself
is not a contribution of this paper. Theoretical and experimen-
tal benefits of FactoredPlan is shown in the previous papers
[14], [15]. We run our simulation on a general purposed
planner [29]. Thus, the NaiveSolution algorithm is used in
this simulation.

VIII. CONCLUSIONS AND FUTURE RESEARCH

We present an algorithm that combines the general purpose
(logical) planner and a motion planner. Our planner is
designed to manipulate objects with robot. To solve the
problem, previous works used a hierarchical planner (high-
level) and a motion planner (low-level). Most of them used
manual encodings between two layers. That was one of
technical hardness of this problem.

Theoretically, combining such planners is hard for the
following reasons: (1) hierarchical planner is hard and not
feasible sometime; and (2) direct combination of C-space
and state space gives an doubly exponential search problem.
Moreover, we can loss the geometric motion planning infor-
mation, if we translate everything to PDDL [13] without a
motion planner.

We combine the C-space and state space in a KB, CPMP
(Combining Planning and Motion Planning). Moreover, we
provide the computational complexity of the problem. We
also argue that the treewidth of CPMP determines the hard-
ness of a manipulation task.

However, the suggested algorithm still has some lim-
itations that need to be improved in future research.
The exploration steps in FindActionFromMP may take
long time due to the large cardinality of state space
(O(n + |objects| + p) as in lemma 2. Assumptions of EF-
space would inappropriate for cluttered environments where
O(maxep∈EF-Space(ball(Pep)) of theorem 5 are intractable.

11The details of encoded actions and movies are available at
http://reason.cs.uiuc.edu/jaesik/cpmp/supplementary/.
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