
Factored Planning for Controlling a Robotic Arm

Jaesik Choi and Eyal Amir
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, IL 61801

{choi31,eyal}@cs.uiuc.edu

Abstract

Controlling robotic arms is important for real, physi-
cal world applications. Such control is hard because
movement of one joint affects the position of many of
the rest. In this paper we present an algorithm that
finds plans of motion from one arm configuration to a
goal arm configuration in 2D space. Our algorithm is
unique in two ways: (a) It takes time that is only poly-
nomial in the number of joints (O(m7 · 2n)(= O((2D
Space)3 · m)), with m joints and n island obstacles),
thus allowing scaling up to complex arms; and (b) it
decomposes the control problem to that of the sepa-
rate joints, thus enabling future development of reactive
modules. The algorithm leaves each joint somewhat in-
dependent of the rest by reformulating the domain de-
scription and re-partitioning it. Our algorithm is sound
and complete given mild assumptions: it finds a plan, if
there is one, and every returned plan leads to the goal.
Also, it has bounded error with respect to the optimal
path in the discretized environment. Our approach is
promising because it leads naturally to a subsumption-
architecture-like control of robotic arms.

1 Introduction
A robotic arm is a manipulator that has revoluting joints con-
necting oval-like pegs, much like a human’s shoulder, elbow,
wrist, palm, and fingers. The complexity of motion planning
increases exponentially with the dimensionality of the space
(the number of joints of the arm) (Canny 1987). Nonethe-
less, robotic arms are crucial for general purpose mobile
robots, so much work has been invested in studying their
controls (Kuffner. and LaValle 2000; Kavraki et al. 1996;
Brock and Khatib 2000).

Unfortunately, current algorithms still depend exponen-
tially on the dimensionality of the configuration space. This
limits severely the number of joints that an arm can have in
practice. In addition, the probabilistic approaches are not
complete, and they provide a solution with probability that
depends on the computation time spent. Most importantly,
from the perspective of AI, current algorithms do not relate
to a larger architecture for intelligent behavior.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In this paper we present a path planning algorithm that can
scale to robotic arms with high degrees of freedom. We re-
duce the complexity of planning by applying independence
assumptions to configurations of arm joints. Specifically
the configurations of any joint is independent of other joints
given the adjacent previous joint. We apply this to partition
the planning problem into small subdomains associated with
each joint. This enables scaling to arms of many joints.

Our approach is composed of two procedures: factoring
and planning. We partition the problem manually into sub-
domains that correspond to each joint. Then, in each subdo-
main, we find a comprehensive set of plans of action and
process a tree of subdomains in a dynamic programming
fashion. This is done with a modified Factored Planning
algorithm (Amir and Engelhardt 2003).

In the manually factored domain, the configuration space
of our robotic arm is represented using distinctive groups of
axioms in Propositional Logic (ground predicate calculus).
On a joint, our algorithm finds valid actions with precondi-
tions and effects in PDDL (McDermott 1998). The actions
are grouped based on the locations of an end effector. If
there are some obstacles that prevent the actions from being
merged, the actions are split into several equivalence classes.
Our algorithm finds all the possible PDDL actions by iterat-
ing from the inner-most joint to the outer-most one. Based
on the achieved PDDL actions, a planner finds a path which
is sound and complete 1.

We prove the complexity of our algorithm in various en-
vironments; without any obstacles, with ‘n’ convex islands,
and with an infinite number of obstacles. The complexity
of the algorithm without any obstacles is O(m7) (when m
is the number of joints). Although the complexity of our
algorithm increases exponentially with the number of con-
vex islands, O(m7 · 2n), we also prove that the complexity
of the algorithm is bounded by O(m5 · cm) (when n is the
number of obstacles, and c is a constant). Thus, in many en-
vironments our algorithm is computationally superior to the
previous approaches. Our algorithm is guaranteed to posi-
tion the end effector in its target position. Furthermore, we
give a condition that guarantees that the configuration error

1The returned paths of our algorithm are sound, because the
paths always make the arm move to the goal location. The sug-
gested algorithm is complete, because the algorithm returns a path
if there is a path.

(distance from the requested overall configuration in some
norm) in the planned path (with respect to the configuration
in the optimal one) is bounded.

Finally, the architecture for this arm fits well with decom-
position approaches to AI (McIlraith and Amir 2001), plan-
ning (Amir and Engelhardt 2003), and control (Amir and
Maynard-Zhang 2004). This is promising for inclusion of
such algorithms in a larger-scale cognitive architecture.

The previous works can be categorized into three
groups; Potential Field (Khatib 1986), Cell Decomposition
(Schwartz and Sharir 1983), and Roadmap (Canny 1987;
Kavraki et al. 1996). They are based on the configura-
tion space which is a set of all the possible configurations
of all joints. Thus, the complexity of the methods for com-
plete planning are exponentially proportional to the number
of joints; the complexity of Potential Field is O(cm), the
complexity of Cell Decomposition is O(22m

), and the com-
plexity of Roadmap Method is O(2m) (when m is the num-
ber of joints).

The wavefront-expansion (Barraquand and Latombe
1991) is a complete algorithm, although the original Poten-
tial Field approach (Khatib 1986) is not complete. While
Cell Decomposition approaches group the adjacent cells
in the configuration space, we group the configurations of
which the end effectors indicate the same location. Proba-
bilistic Roadmap currently dominates the motion planning
literature. Because it generates samples in the configuration
space at random, the complexity is dramatically reduced.
However, it is not complete without probabilistic assump-
tion.

In the following sections, we define the states and actions,
specify our planing algorithm, analyze the complexity and
correctness of the algorithm, and provide the experimental
results. In section 2, the PDDL actions and planning algo-
rithm are presented. At the section 3, we suggested our path
planning algorithm. In section 4, we analyze the complexity
and correctness of our algorithm. In the following sections,
we provide experimental results, discuss related works, and
close with conclusions.

2 An Example and State Definition
In this section, we present the domain encoding used by our
path planning algorithm. The input to our algorithm is a 2D
chain of vertices (joints), edges (pegs) (e.g., see 1), their ini-
tial position, and a target location for the end effector. There,
a state specifies the location of any joint of the arm. The only
actions are rotations of joints.

A Motivating Example
Figure 1 shows an example of simple movements of an arm.
The upper part of Figure 1 demonstrates the sequence of ac-
tions which move the arm from one position to another. The
bottom part shows the corresponding actions that we rep-
resent here. For example, Figure 1(A) presents an action
RightJ3(W0,W1,P3)(shown in Figure 1(a)) which means that
the end effector of the arm moves from angular position W0

to W1 towards the right direction by a 3rd joint(Joint3) at
P3.

RightJ3(W0, W1, P3)

W0

W1

P3

W1 W2

P0

W2W3

P2

(A) (B) (C)

RightJ0(W1, W2, P0) LeftJ2(W2, W3, P2)

Joint0

Joint1

Joint2

Joint3

(a) (b) (c)

Figure 1: The upper part represents the sequence of movements
of the arm. The three actions move the position of the arm to its
target. The bottom part shows the corresponding actions that we
represent here.

In this representation, each action has two precondi-
tions and a postcondition. For example, the 1st action
(RightJ3(W0,W1,P3)) has the following conditions. The two
preconditions are ‘The end effector of the arm is at W0’ and
‘3rd joint is at P3’. The postcondition is ‘The end effector of
the arm is at W1’. Intuitively, this action represents a right
movement of 3rd joint which changes the location of end
effector as a pivot point.

Our representations (Figure 1(a, b, c)) are simple and ef-
ficient compare to the configuration space representations
(Figure 1(A, B, C)). Even though there are only 4 joints, the
configurations space are complex to manage and memorize.
However, our representation only care about the three lo-
cations (one pivot point and two locations of end effector)
which are related to the action.

State Definition in Propositional Logic

Here, we formally define the Workspace (W) and the set
of actions (Act). In this section, we assume that there is
no obstacle (we lift this assumption in section 2.3). The
Workspace of the robot (Wrobot) is the set of discretized lo-
cations that can be occupied by any joint of the arm in the
2D space. A location in the workspace (W) is represented
by the w = (x, y, θ) (x ∈ X , y ∈ Y , and θ ∈ Θ, when
X , Y , and Θ are the discretized x axis, y axis, and angular
orientations respectively). That is, the set of all the locations
is Wrobot = {(x, y, θ)|(x ∈ X) ∧ (y ∈ T) ∧ (θ ∈ Θ) } 2.

Ai is the set of actions of the ith joint. Ai(wi) is the
set of actions that are grouped by a location wi ∈ W . An
action (Left(i,wi,wj)) of Ai(wi) is defined PDDL form as
following,

2The assumptions of this research can be also adapted to the
3-dimensional workspace environment, w = (x, y, z, α, β, γ)

Left(i,wi,wj) =

8<: pre : endj(wj) ∧ endi(wi)
del : endi(wi)
add : endi(w

′
i)

When endj() is the predicate for the location of jth joint and
wi, w′

i and wj are locations in Wrobot.
A complex action (Left(i,wi,wj) ∈ Ai(wi)) means that a

unit left movement of the jth joint at wj changes the location
of ith joint from wi to w′

i. Based on the change of ith joint,
the movement of the next (i + 1th) joint can be described as
following.

pre :endj(wj) ∧ endi(wi) ∧ endi+1(wi+1)

del :endi(wi) ∧ endi+1(wi+1)

add :endi(w
′
i) ∧ endi+1(w

′
i+1)

An action of i + 1th joint can be described with the pre-
condition (wi+1) of the joint and an action (Left(i,wi,wj))
of the previous (ith) joint. That is, the movement of the jth

joint at wj not only changes the location of ith joint from
wi to w′

i but also changes the location of i + 1th joint from
wi+1 to w′

i+1. However, the new action Left(i+1,wi+1,wj) ∈
Ai+1(wi+1) can be defined without the propositions of ith
joint (endi()), because an action require only 3 conditions
(one pivot point and two locations).

Left(i+1,wi+1,wj) =

8<: pre : endj(wj) ∧ endi+1(wi+1)
del : endi+1(wi+1)
add : endi+1(w

′
i+1)

End-effector Space
In the most general case (with many obstacles), the simple
Workspace is not enough to represent the actions, because
some configurations, which result in wi, may not execute
some of actions in Ai(wi). Thus, we need to group the set
of configurations that can share their actions. We called the
the set of configurations as a point es of ES (End-effector
Space).

The End-effector Space of the ith joint (ESi) is the set of
pairs of a location and its representative configuration; es =
(w, 〈cj〉j≤i) when cj is an angular configuration of the jth

joint (the direction of jth joint). Each element is indexed by
loc and conf , that is es(loc) = w and es(conf) = 〈cj〉j≤i.

With the definition of End-effector Space, we represent an
action (Right(i,es(loc),wj) ∈ Ai(es)) that changes the loca-
tion of ith joint from wi(= es(loc)) to w′

i by the movement
of jth joint at wj as following.

pre :endj(wj) ∧ endi(es(loc))

del :endi(es(loc))

add :endi(w
′
i)

3 Factoring and Planning for a Robotic Arm
In this section, we explain our planing algorithm and the way
that we make factoring possible.

A Modified Factored Planning Algorithm

Algorithm:RobotArmPlan
Input: the start configuration(esstart); the goal

configuration(esgoal); number of steps in
planning(depth); the lengths of pegs({leni}i≤m)

Output: Planned actions
ES0← {(xbase, ybase, θbase)} /* The mounted base

*/
for j ← 1 to m(m is the last joint) do

for es ∈ ESj−1 do
foreach angle(ang) of jth joint do
〈es′, act〉 ←
SingleJointPlan(es, ang, lenj , Aj−1) if act 6= nil
then StorePartPlan(es′, act, ESj , Aj)

〈path〉 ← PathPlan(esstart, esgoal, Am, ESm, depth)
return 〈path〉

Algorithm 1: RobotArmPlan

Procedure RobotArmPlan is presented in Algorithm 1 and
its subroutines are presented in Algorithms 2, 3, 4 and 5.
Our overall algorithm partitions the problem domain at each
joint, and each partition precompiles all possible macro ac-
tions for the joint and sends those macro action description
in PDDL to the adjacent outer joint. Algorithm RobotArm-
Plan is given a start and a goal configuration, the search
depth for planning, the lengths of pegs and obstacle infor-
mation. It returns the sequence of actions that moves the
arm to the goal location.

Algorithm:SingleJointPlan
Input: an end-effector point(es); the orientation to the next

joint(ang); the length of the jth peg(lenj); the actions
of jth joint(Aj−1)

es′(loc)← es(loc) + trans(es(loc), ang, lenj)
3

es′(conf) = es(conf) + 〈ang〉
actj ← ∅
foreach actj−1 ∈ Aj−1(es) do

Make actnew (endi(wi): a pre-condition of actj−1)
pre: endi(wi) ∧ endj(es

′(loc))
eff : ¬endj(es

′(loc)) ∧ endj(w
′
j)

if actnew do not collide with any obstacle then
actj ← actj

S
{actnew}

foreach left and right move of jth joint do
Make actnew as following

pre: endj−1(es(loc)) ∧ endi(es
′(loc))

eff : ¬endj(es
′(loc)) ∧ endj(w

′′
j)

if actnew do not collide with any obstacle then
actj ← actj

S
{actnew}

return 〈es′, act〉
Algorithm 2: SingleJointPlan

We discuss three of the subroutines of RobotArmPlan in
detail. The first, SingleJointPlan3, is shown at Algorithm

3trans(...) returns the position of next joint given the location
of the current joint, the angular orientation, and the length of peg

2. It finds all the macro actions (local plans) of a specific
location of the current joint given all the accessible possi-
ble locations and actions of the previous joint. The returned
macro actions include all the necessary rotations of inter-
nal joints as subroutines. Given the actions of a location of
the current joint, StorePartPlan merges them to an existing
group (if there is an identical location) or inserts them into a
new group (if there is no identical location). The PathPlan
receives all the planned actions as input and returns the se-
quence of actions as output, if the goal configuration can be
reached by less than depth actions.

This method is similar to Factored Planning (Amir and
Engelhardt 2003) in that the domain is split into sub do-
mains and the subdomains send messages as a form of ac-
tions. However, our algorithm has important differences.
The characteristic of robotics (a large amounts of shared flu-
ents between consecutive joints) prevents us from using the
general Factored Planning algorithm because the complexity
of the algorithm (which depends on the number of messages
of macro actions) is exponential in the number of shared flu-
ents. This number increases with the number of joints in
the naive use of Factored Planning. Thus, we modify the
algorithm to reduce the size of messages.

Our contribution in this regard is that we reduce the num-
ber of messages using the characteristics of our robotic arm
planning problem. With |W | propositions, the number of
potential messages is proportional to the number of possible
pairs of preconditions and effects, i.e., 22|W |. However, the
complexity is reduced if we focus on the fact that the action
requires one proposition (endj(w)) in the precondition and
another proposition (endj(w′)) in the effect. When the w
and w′ are locations of the jth joint in the working space
(W), the number of possible combinations of fluents is only
|W |2.

How do we make Factoring Possible?
We reduce the complexity of the planning problem by
grouping partial plans based on the location of a given joint.
Thus, we do not consider a specific configurations of joints
of an arm, if the location of end effector is identical to an-
other one that we already considered. This avoids storing
the exponentially many specific configurations.

Algorithm:StorePartPlan
Input: an end-effector point(es′); the actions of the es′(act);

the jth end-effector space of (ESj); the actions of jth

joint(Aj)
foreach es ∈ ESj when es(loc) = es′(loc) do

if es′(conf) and es(conf) are Homotopic then
Aj(es)← Aj(es)

S
act

return

Aj(es
′)← act

Algorithm 3: StorePartPlan

We define the Homotopic Configurations for grouping
sets of actions. Two configurations indicating the same end-
points are homotopic if one can be continuously deformed
into the other. The concept of Homotopic Configurations is

a

b c

Figure 2: The Homotopic relationship among the configurations;
‘a’, ‘b’ and ‘c’ are the configurations of the arm; ‘a’ and ‘b’ are
not Homotopic configurations; ‘a’ and ‘c’ are Homotopic configu-
rations

based on Homotopic Paths (Brock and Khatib 2000) 4. For
example, in Figure 2, the two configurations ‘a’ and ‘c’ are
Homotopic and ‘a’ and ’b’ are not Homotopic.

A local planner is used to find a path between the two Ho-
motopic Configurations. However, in the real environment,
two Homotopic configurations are not always continuously
deformable each other, due to the rigid body of link5. In Al-
gorithm PathPlan, actions are validated by a local planner.
This can be achieved by any inverse-kinematics algorithm
which avoids obstacles. There are many local path planning
algorithms for such a calculation (Zlajpah and Nemec 2002).

Algorithm:PathPlan
Input: the start(esstart); the goal(esgoal); the actions(A); the

end-effector space(ES); the depth of planning(depth)
es′start← FindES(esstart, A, ES)
es′goal← FindES(esgoal, A, ES)
j ← 1, R0← {es′start}, Rtotal = ∅, A′ = ∅
for j ← 1 to depth do

foreach es ∈ Rj−1, act(m,es,wi,...) ∈ A(es) do
if act(m,es,wi,...) is valid for es then

w
ith a local planner es0← moved es by the
act(m,es,wi,...)

es′← FindES(es0, A, ES)
if es′ 6∈ Rtotal then

Make new Action(move(es,es′))
pre: es ∧ donej−1 ∧ ¬donej

eff : es′ ∧ donej

Actglobal← {move(es,es′)}
S

Actglobal

Rtotal← Rtotal

S
{es′}

Init(es′start, done0, ¬done1, ..., ¬donedepth)
Goal(es′goal, done0, done1, ..., donedepth)
Search for plans (Φ) in Init, Goal, Actglobal

return Φ

Algorithm 4: PathPlan with a local planner

4Two paths with the same endpoints are homotopic if one can
be continuously deformed into the other

5We check the Homotopic relationship with local planner. We
allow the end point can be moved, if the movement can be managed
by the local planner.

4 The Analysis of The Algorithm
In this section, we analyze the complexity and correctness of
the suggested algorithm. In the proofs, we assume that the
local planner could find a path from one configuration to
another, if the two configurations are Homotopic and there
is a path between the two.

Complexity Analysis
Here we analyze the complexity of the suggested algorithm.
We prove the complexity of this algorithm in various envi-
ronments; without obstacles; with a convex island obstacle;
with ‘n’ convex island obstacles; and with infinite number
of obstacles. If we find the path with an exact path plan-
ning algorithm (Khatib 1986) (Brock and Khatib 2000) in
the dimensional space, the complexity is

O
(
min (cm,mdepth)

)
Theorem 1.1: The complexity of our algorithm is bounded

by (When |ESm| is the search space of the end effector.)

O(m · |W |2 · |ESm|) = O(m5 · |ESm|)
We have |W |(= cN2 = 2π

∆θ (mL)2) axioms representing the
positions of the end effector of the robotic arm. Moreover,
we have all the possible “move” actions between the axioms
(positions). In Algorithm 4, we can find all the reachable
position with t actions at the tth step. If we execute further
depth steps, we can find all the possible paths whose lengths
are shorter than depth. However the depth is also bounded
by |W |

Without Obstacles Lemma 1.1: Without any obstacles,
the complexity of RobotArmPlan is following given m
links 6.

O(m · |W |2 · |ESm|) = O(m · |W |3) = O(m7)
With Convex Islands Lemma 1.2: If there exists a convex
island, the size of the end effector, |ESm|, is bounded by
O(|ESm|) = O(2 · |W |).

That is, there are at most 2 distinct elements (es0 and es1)
for a location w. (when w ∈ W , es0(loc) = es1(loc) = w,
and es0(conf) 6= es1(conf))

Lemma 1.3: The search space the end effector with n con-
vex islands is bounded by O(2n · |W |).

With an Infinite Number of Obstacles Lemma 1.4: If
there is an infinite number of obstacles, the search space of
the end effector, |ESm|, is bounded by

O

(
(
2π

∆θ
)
m)

= O(cm).

The Size of |ESm| Theorem 1.2: If there are n convex
islands (obstacles), the search space of the end effector,
|ESm|, is bounded by

O
(
min

(
2nm2, cm

))
.

When n is the number of obstacles, c is 2π
∆θ

, and m is the number
of joints.

6We assume that the local planner terminates within a constant
time.

Algorithm:FindES
Input: an end-effector point(es); the set of actions(Act); the

end-effector space(ES)
foreach es′ ∈ ES for es′(loc) = es(loc) do

if es′(conf) and es(conf) are Homotopic Configurations
then

if local planner find a path from es′ to es then
return es

es′′← es (es′′: new point)
ES← ES

S
{es′′}

Act(es′′)← Act(es)
return es′′

Algorithm 5: FindES

Proof. by Lemma 1.1, 1.2, 1.3, and 1.4

Soundness and Completeness
We prove this path planning algorithm is sound and com-
plete. Our planning algorithm is sound, because all the re-
turned paths are valid. Moreover, the planning algorithm is
complete. If there is a path from the start to the goal, the
algorithm finds a path that can reach to the goal.

Theorem 2.1:(Soundness of RobotArmPlan) When a path
〈es0, es1, es2, ..., esn〉 is returned by the algorithm, there
is a path that passes through the configurations 〈es0(conf),
es1(conf), es2(conf), ..., esn(conf)〉 with the robotic arm
(when es0 is esstart and esn is esgoal)

Lemma 2.1: With the robotic arm, we can find movements
for every move(es, es′) ∈ Actglobal in PathPlan

Proof. By the Lemma 2.1, we can find movements for any
consecutive es points. For any esj−1 and esj pair, we
can find movements that control the robotic arm from an
esj−1(conf) to an esj(conf). Thus, we can use mathemat-
ical induction for the whole path.

Theorem 2.2:(Completeness of RobotArmPlan) If there
exist a unique path whose number of movements is less than
depth, our algorithm finds a path.

Proof. We use the mathematical induction to prove the com-
pleteness. For the 1st step, we can simply find it because we
have all the actions for each point (es ∈ ESm). We have
a complex action in A(es), if there exists a unit movement
from a location (es) to another (es1). For the n − 1th step,
we assume that we can find a path if there exist n− 1 move-
ments from a location (es) to another (esn−1).

For the nth step, suppose that a path 〈es0, es1, ..., esn−1,
esn〉 is unique from es0 to esn. Based on the mathemat-
ical induction, we already have a path from es0 to esn−1.
Moreover, we have an action (act(m,esn−1,...)) from esn−1

to esn
7, because a unit movement of the arm really exists

from esn−1 to esn. Thus, the algorithm finds a path 〈es0,
es1, ..., esn−1 〉, act(m,esn−1,...) , 〈esn〉.

7Here, the action does not always guarantee the optimal path,
because we don’t store the actions of a specific configuration.

(A)

(B) (C)

Figure 3: A path planning problem to measure the performance of
the algorithm. (A) is the initial condition and (B) is the goal.

Error Bound
Here, we examine the error of the suggested algorithm with
respect to the discretized configuration space algorithm. 8

The error can be divided into two categories: (1) the dis-
placement of location; and (2) the difference of angles.

The error of x and y is simply additive to the position of
the last link, when cell size is small enough compared to the
length of pegs. At each step, the maximum error of x axis
(∆xpos) increases 1

2 |cell| at each joint when |cell| is the size
of a cell. Thus, the maximum error is m

2 |cell|. Similarly, the
maximum error of y axis (∆ypos) is also m

2 |cell|.
We analyze the angular error by supposing that ∆θ is a

unit angular displacement (2π
c) and c is the number of dis-

cretized angles. The angular error of the last joint with re-
spect to the original configuration is bounded by m∆θ

2
9 be-

cause the maximum error of angle at each joint is bounded
by ∆θ

2 . Thus the maximum displacement of x (∆xang) is
N sin (m · ∆θ

2) when N is the total length of joints.
Theorem 3: Given an optimal path of discretized con-

figuration space algorithm, the path of RobotArmPlan has
at most

√
2r distance error, when we configuration that the

|cell| is less than r
m and ∆θ is less than 2

m · sin−1 (r
N).

5 Experimental Result
We verify our algorithm by using the environment in Figure
3 (borrowed from (Latombe 1991)). The initial condition is
Figure 3 (A). The goal condition is Figure 3 (C). The diffi-
culty of this experiments is the narrow hole that the joints
have to pass through.

We compare the performance of our algorithm with the
Wavefront Method (Barraquand and Latombe 1991) which
is one of the fastest complete algorithms. In the experi-
ments, we change the number of joints that a robotic arm
controls from 1 to 9. When the number of joints increases,
the time for both planning algorithms increases shown in
Figure 4. Our algorithm is significantly faster than the Wave-
front Method and can plan effectively even when the Wave-
front method fails.

6 Conclusion
Two contributions of our work are (1) an algorithm whose
complexity is polynomial to the number of joints, and (2)

8We use the discretized configuration space in contrast to the
continuous configuration space. Here we consider the uniformly
split configuration space

9The worst case is occurred when the outermost link is very
larger than the inner joints.

0

2000

4000

6000

8000

0 1 2 3 4 5 6 7 8 9 10 11
Number of Joints

T
im

e
(s

ec
)

Factored Planning

Wavefront Method

Figure 4: The planning time for the different number of joints.

the decomposition of the control problem into sub prob-
lems. When the optimal path approaches the goal location
within finite steps (depth), the planning algorithm is sound
and complete. It is only polynomial in the number of joints,
although the complexity is exponential in the number of ob-
stacles. Our theoretical results show that the planning algo-
rithm scales well in planning the path of a robotic arm.

References
E. Amir and B. Engelhardt. Factored planning. In IJCAI, pages
929–935, 2003.
E. Amir and P. Maynard-Zhang. Logic-based subsumption archi-
tecture. Artif. Intell., 153(1-2):167–237, 2004.
J. Barraquand and J.-C. Latombe. Robot motion planning: a dis-
tributed representation approach. Int. J. Rob. Res., 10(6):628–649,
1991.
O. Brock and O. Khatib. Real-time replanning in high-
dimensional configuration spaces using sets of homotopic paths.
In ICRA’00, pages 550–555, 2000.
J. Canny. The Complexity of Robot Motion Planning. MIT Press,
Cambridge, MA, 1987.
L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Prob-
abilistic roadmaps for path planning in high dimensional config-
uration spaces. IEEE Trans. on Rob. and Auto., 12(4):566–580,
1996.
O. Khatib. Real-time obstacle avoidance for manipulators and
mobile manipulators. Int. J. of Rob. Res., 5(1):90–98, 1986.
J. J. Kuffner. and S. M. LaValle. RRT-connect: An efficient ap-
proach to single-query path planning. In ICRA’00, pages 995–
1001, 2000.
J.-C. Latombe. Robot Motion Planning. Kluwer, Boston, MA,
1991.
D. McDermott. The planning domain definition language man-
ual., 1998.
S. A. McIlraith and E. Amir. Theorem proving with structured
theories. In IJCAI’01, pages 624–634, 2001.
J. T. Schwartz and M. Sharir. On the Piano Movers’ Problem: I.
Commu. on Pure and Applied Math., 36:345–398, 1983.
L. Zlajpah and B. Nemec. Kinematic control algorithms for on-
line obstacle avoidance for redundant manipulators. In IROS’02,
pages 1898–1903, 2002.

